亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial Intelligence and Neural Network-Based Shooting Accuracy Prediction Analysis in Basketball

计算机科学 人工神经网络 人工智能 篮球 一般化 机器学习 径向基函数 模式识别(心理学) 算法 数学 历史 数学分析 考古
作者
Hongfei Li,Maolin Zhang
出处
期刊:Mobile Information Systems [IOS Press]
卷期号:2021: 1-11 被引量:17
标识
DOI:10.1155/2021/4485589
摘要

In order to improve the accuracy of shooting in basketball. A shooting accuracy prediction method based on the convergent improved resource allocating network (CIRAN) online radial basis function neural network (RBFNN) is proposed, and the RBFNN learning algorithm is improved. Through the collection of shooting motion images, feature point extraction, and edge contour feature extraction, the shooting motion trajectory is obtained. Using the online neural network based on the CIRAN learning algorithm to predict the accuracy of shooting, this method analyzes the radial basis function (RBF) network. Based on the RBF analysis, the number of network layers and the number of hidden layer neurons are adjusted and optimized. In order to improve the prediction accuracy of shooting in basketball, a method based on. Through the analysis, it can be known that the accuracy of both the traditional RBFNN and the CIRAN-based online neural network for the prediction of shooting accuracy is above 70%. The prediction accuracy of the online neural network for shooting is higher than that of the traditional one. This is mainly because the online update function of the learning algorithm can better adjust the corresponding structure with the development of the game and has a better generalization ability. In addition, because the CIRAN learning algorithm introduces the hidden layer neuron deletion strategy, its network structure is simpler than that of the traditional one, the number of hidden layer neurons is less, and the running time required is less, which can better meet the real-time requirements and provide a more scientific method for basketball training.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bzlish发布了新的文献求助10
14秒前
思源应助bzlish采纳,获得10
20秒前
bzlish完成签到,获得积分10
26秒前
1分钟前
方沅完成签到,获得积分10
1分钟前
2分钟前
kiko完成签到,获得积分10
2分钟前
桐桐应助liudy采纳,获得10
2分钟前
2分钟前
liudy发布了新的文献求助10
2分钟前
星辰大海应助DofLanic采纳,获得20
3分钟前
3分钟前
搜集达人应助armpit采纳,获得10
3分钟前
DofLanic发布了新的文献求助20
3分钟前
3分钟前
armpit发布了新的文献求助10
3分钟前
徐伟康完成签到 ,获得积分0
3分钟前
崔柯梦发布了新的文献求助10
4分钟前
在水一方应助崔柯梦采纳,获得10
4分钟前
NexusExplorer应助liudy采纳,获得10
4分钟前
4分钟前
dopamine发布了新的文献求助30
4分钟前
arsenal完成签到 ,获得积分10
4分钟前
4分钟前
liudy完成签到,获得积分10
4分钟前
liudy发布了新的文献求助10
4分钟前
5分钟前
天天快乐应助王其超采纳,获得10
6分钟前
6分钟前
王其超发布了新的文献求助10
6分钟前
石头完成签到,获得积分10
6分钟前
万能图书馆应助王其超采纳,获得10
6分钟前
7分钟前
王其超发布了新的文献求助10
7分钟前
科研通AI2S应助科研通管家采纳,获得30
7分钟前
8分钟前
dwadwa发布了新的文献求助10
8分钟前
所所应助奶茶田田采纳,获得10
8分钟前
dwadwa完成签到,获得积分20
8分钟前
8分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Towards a spatial history of contemporary art in China 400
Ecology, Socialism and the Mastery of Nature: A Reply to Reiner Grundmann 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3847736
求助须知:如何正确求助?哪些是违规求助? 3390439
关于积分的说明 10561554
捐赠科研通 3110793
什么是DOI,文献DOI怎么找? 1714535
邀请新用户注册赠送积分活动 825272
科研通“疑难数据库(出版商)”最低求助积分说明 775453