Encoding capability prediction of acquisition schedules in CEST MR fingerprinting for pH quantification

均方误差 欧几里德距离 公制(单位) 采样(信号处理) 成像体模 计算机科学 偏移量(计算机科学) 模式识别(心理学) 算法 生物系统 人工智能 数学 统计 核医学 计算机视觉 程序设计语言 经济 滤波器(信号处理) 生物 医学 运营管理
作者
Jie Liu,Hui Liu,Qi Liu,Jian Xu,Xin Liu,Hairong Zheng,Yin Wu
出处
期刊:Magnetic Resonance in Medicine [Wiley]
被引量:1
标识
DOI:10.1002/mrm.29074
摘要

To identify a reliable metric for predicting the encoding capability of CEST MR fingerprinting acquisition schedules for pH quantification, which may facilitate CEST MR fingerprinting protocol optimization.Numerical simulations and Cr phantom MRI experiments were conducted at 3 Tesla under representative CEST MR fingerprinting sampling scenarios, including the pseudorandomization of imaging parameters (e.g., saturation power B1 , saturation frequency offset, saturation time, and relaxation time), and variation of the maximum saturation power B1max , B1 number, and sampling pattern. The CEST effect at 2 ppm was measured using asymmetry analysis and matched to a predefined dictionary to determine the pH. The pH quantification error was assessed using RMSE. Three metrics, namely the Cramer-Rao bound, dot product, and Euclidean distance, were calculated for each sampling scenario, and their relationships with the pH RMSE were investigated to examine their effectiveness for predicting the encoding capability of sampling schedules for pH quantification.Both simulation and phantom studies revealed that the Cramer-Rao bound metric consistently exhibited superior performance for predicting the pH quantification error. Although dot product exhibited good encoding capability prediction in most sampling scenarios, it failed in the scenario with varied B1 numbers. In contrast, Euclidean distance exhibited the worst performance among the 3 metrics in all scenarios.Superior over dot product and Euclidean distance, the Cramer-Rao bound metric may reliably predicting the encoding capability of CEST MR fingerprinting sampling strategies and may be useful for guiding CEST MRI protocol optimization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助从容的皮皮虾采纳,获得10
刚刚
秀丽的大门完成签到,获得积分10
1秒前
小张发布了新的文献求助10
1秒前
1秒前
Akim应助道奇采纳,获得10
1秒前
okghy发布了新的文献求助10
1秒前
1秒前
2秒前
生动项链完成签到,获得积分10
2秒前
2秒前
shiningxujin发布了新的文献求助30
2秒前
量子星尘发布了新的文献求助10
2秒前
清狗垃圾完成签到,获得积分10
2秒前
3秒前
3秒前
正直听芹发布了新的文献求助10
3秒前
满意涵梅完成签到 ,获得积分10
3秒前
3秒前
拼搏绿柳完成签到,获得积分10
3秒前
3秒前
夭夭发布了新的文献求助10
4秒前
传奇3应助LBM采纳,获得10
4秒前
4秒前
5秒前
blackddl应助我爱科研采纳,获得20
5秒前
5秒前
wanci应助w2503采纳,获得10
5秒前
5秒前
shirongchen完成签到,获得积分10
5秒前
缓慢弼发布了新的文献求助10
6秒前
xiaoziyi666发布了新的文献求助10
7秒前
7秒前
万能图书馆应助fdx采纳,获得10
7秒前
深情安青应助余小胖采纳,获得10
7秒前
7秒前
赵yy应助高小明采纳,获得10
7秒前
8秒前
8秒前
bingzichuan发布了新的文献求助10
8秒前
Tan发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512039
求助须知:如何正确求助?哪些是违规求助? 4606513
关于积分的说明 14499938
捐赠科研通 4541921
什么是DOI,文献DOI怎么找? 2488717
邀请新用户注册赠送积分活动 1470803
关于科研通互助平台的介绍 1443043