Quantum Convolutional Neural Networks (QCNN) Using Deep Learning for Computer Vision Applications

计算机科学 卷积神经网络 深度学习 人工智能 量子计算机 目标检测 人工神经网络 特征(语言学) 量子机器学习 机器学习 量子 模式识别(心理学) 语言学 量子力学 物理 哲学
作者
Varadi Rajesh,Umesh Parameshwar Naik,Mohana
标识
DOI:10.1109/rteict52294.2021.9574030
摘要

Deep learning algorithms and models have made an impact in the area of AI and machine learning, one among them is CNN. CNN is extensively used in the area of image recognition and object detection for classification purposes. CNN is composed of several layers of filters to get feature maps of input data, yet foremost and crucial one is convolutional layer, hence the name Convolutional neural networks. However, the growth of quantum computing and quantum neural network in deep learning is limited. Three main obstacles that limit the growth of these are, first is due to the lack of real-time quantum computers to experiment with. Second is the improper training algorithms and at last, non-linearity nature of the neural networks. This paper introduces a novel approach to begin one's journey in quantum computing, along with solutions and developments. This work provides a detailed description of architectures, frameworks and algorithms used for implementing a QCNN model. The research was made regarding image recognition and object detection using QCNN and found that QCNN can increase the computational speeds with better performance metrics compared to classical computational methods. This paper also debates about applications of QCNN in computer vision, signal and image processing, Pharmaceuticals, Cryptography and various other fields. This study also explains Key players and future work in developing quantum computers, quantum computing algorithms, software and hardware support to implement QCNN in various applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yaoyao完成签到,获得积分10
1秒前
小蘑菇应助hilapo采纳,获得10
1秒前
2秒前
2秒前
赵晓倩发布了新的文献求助10
3秒前
小巧曼容完成签到,获得积分10
3秒前
3秒前
lw完成签到,获得积分10
4秒前
MrD发布了新的文献求助10
4秒前
毓雅完成签到,获得积分10
5秒前
神的觉悟完成签到,获得积分10
5秒前
yaoyao发布了新的文献求助10
6秒前
lll发布了新的文献求助10
6秒前
彭于晏应助Peter采纳,获得10
7秒前
8秒前
赘婿应助任娜采纳,获得10
8秒前
Orange应助wh111采纳,获得10
8秒前
完美世界应助Mayday采纳,获得10
8秒前
小二郎应助tian采纳,获得10
9秒前
小巧的以南完成签到,获得积分10
9秒前
小马完成签到,获得积分10
9秒前
MrD完成签到,获得积分10
9秒前
9秒前
毓雅发布了新的文献求助10
10秒前
11秒前
D方发布了新的文献求助30
11秒前
11秒前
11秒前
chemhehe完成签到,获得积分10
12秒前
retosure完成签到,获得积分10
12秒前
12秒前
梅荣庆完成签到 ,获得积分10
12秒前
12秒前
一颗松应助妮儿采纳,获得10
13秒前
梨涡MAMA完成签到,获得积分10
13秒前
Hello应助忧郁的duble采纳,获得10
14秒前
镓氧锌钇铀应助听颂采纳,获得10
14秒前
无语的颜完成签到,获得积分10
14秒前
无心发布了新的文献求助10
15秒前
荔枝完成签到 ,获得积分10
15秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5343888
求助须知:如何正确求助?哪些是违规求助? 4479371
关于积分的说明 13942689
捐赠科研通 4376426
什么是DOI,文献DOI怎么找? 2404779
邀请新用户注册赠送积分活动 1397135
关于科研通互助平台的介绍 1369486