已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SAR-U-Net: Squeeze-and-excitation block and atrous spatial pyramid pooling based residual U-Net for automatic liver segmentation in Computed Tomography

人工智能 计算机科学 分割 Sørensen–骰子系数 残余物 棱锥(几何) 块(置换群论) 模式识别(心理学) 联营 图像分割 计算机视觉 数学 算法 几何学
作者
Jinke Wang,Peiqing Lv,Haiying Wang,Changfa Shi
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:208: 106268-106268 被引量:125
标识
DOI:10.1016/j.cmpb.2021.106268
摘要

• A new U-Net based method SAR-U-Net was proposed for liver segmentation. • The attention mechanism is introduced to derive image features in an adaptive manner. • The transition layer and the final output layer of the U-Net decoder is replaced with ASPP to extract richer multi-scale feature. • The standard convolutional layer of U-Net is replaced with the residual block, and attach a batch normalization layer for faster convergence. • Extensive experiments validate the effectiveness of the proposed method. Liver segmentation is an essential prerequisite for liver cancer diagnosis and surgical planning. Traditionally, liver contour is delineated manually by radiologist in a slice-by-slice fashion. However, this process is time-consuming and prone to errors depending on radiologist's experience. In this paper, a modified U-Net based framework is presented, which leverages techniques from Squeeze-and-Excitation (SE) block, Atrous Spatial Pyramid Pooling (ASPP) and residual learning for accurate and robust liver Computed Tomography (CT) segmentation, and the effectiveness of the proposed method was tested on two public datasets LiTS17 and SLiver07. A new network architecture, called SAR-U-Net was designed, which is grounded in the classical U-Net. Firstly, the SE block is introduced to adaptively extract image features after each convolution in the U-Net encoder, while suppressing irrelevant regions, and highlighting features of specific segmentation task; Secondly, the ASPP is employed to replace the transition layer and the output layer, and acquire multi-scale image information via different receptive fields. Thirdly, to alleviate the gradient vanishment problem, the traditional convolution block is replaced with the residual structures, and thus prompt the network to gain accuracy from considerably increased depth. In the LiTS17 database experiment, five popular metrics were used for evaluation, including Dice coefficient, VOE, RVD, ASD and MSD . Compared with other closely related models, the proposed method achieved the highest accuracy. In addition, in the experiment of the SLiver07 dataset, compared with other closely related models, the proposed method achieved the highest segmentation accuracy except for the RVD . An improved U-Net network combining SE, ASPP, and residual structures is developed for automatic liver segmentation from CT images. This new model shows a great improvement on the accuracy compared to other closely related models, and its robustness to challenging problems, including small liver regions, discontinuous liver regions, and fuzzy liver boundaries, is also well demonstrated and validated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助Lpy采纳,获得10
2秒前
jiaaniu完成签到 ,获得积分10
2秒前
Marcus完成签到,获得积分10
3秒前
3秒前
马甲甲完成签到,获得积分10
7秒前
伊宁发布了新的文献求助20
9秒前
CIAO完成签到,获得积分10
9秒前
12秒前
大模型应助Luckkky采纳,获得10
13秒前
123发布了新的文献求助20
13秒前
bronny完成签到,获得积分10
13秒前
忐忑的黑米完成签到,获得积分10
14秒前
bronny发布了新的文献求助10
16秒前
milly发布了新的文献求助10
20秒前
CIAO发布了新的文献求助10
20秒前
jwt发布了新的文献求助10
22秒前
温暖盼易应助顺利面包采纳,获得10
24秒前
29秒前
myy发布了新的文献求助10
35秒前
lmd250909完成签到,获得积分10
35秒前
俟天晴完成签到,获得积分10
35秒前
36秒前
浮游应助huiwanfeifei采纳,获得10
38秒前
40秒前
大个应助现代的慕青采纳,获得10
43秒前
wanci应助HFBB采纳,获得10
43秒前
时光完成签到,获得积分10
46秒前
桐桐应助元元采纳,获得10
46秒前
科研通AI5应助阿涂采纳,获得10
49秒前
49秒前
影山客完成签到 ,获得积分10
50秒前
长城干红完成签到,获得积分10
50秒前
50秒前
51秒前
51秒前
朱永杰完成签到,获得积分10
51秒前
影山客关注了科研通微信公众号
54秒前
科研发布了新的文献求助10
54秒前
54秒前
半。。发布了新的文献求助10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Beauty and Innovation in La Machine Chinoise: Falla, Debussy, Ravel, Roussel 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
National standards & grade-level outcomes for K-12 physical education 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4805175
求助须知:如何正确求助?哪些是违规求助? 4121253
关于积分的说明 12751451
捐赠科研通 3854674
什么是DOI,文献DOI怎么找? 2122710
邀请新用户注册赠送积分活动 1144912
关于科研通互助平台的介绍 1036193