SAR-U-Net: Squeeze-and-excitation block and atrous spatial pyramid pooling based residual U-Net for automatic liver segmentation in Computed Tomography

人工智能 计算机科学 分割 Sørensen–骰子系数 残余物 棱锥(几何) 块(置换群论) 模式识别(心理学) 联营 图像分割 计算机视觉 数学 算法 几何学
作者
Jinke Wang,Peiqing Lv,Haiying Wang,Changfa Shi
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:208: 106268-106268 被引量:110
标识
DOI:10.1016/j.cmpb.2021.106268
摘要

• A new U-Net based method SAR-U-Net was proposed for liver segmentation. • The attention mechanism is introduced to derive image features in an adaptive manner. • The transition layer and the final output layer of the U-Net decoder is replaced with ASPP to extract richer multi-scale feature. • The standard convolutional layer of U-Net is replaced with the residual block, and attach a batch normalization layer for faster convergence. • Extensive experiments validate the effectiveness of the proposed method. Liver segmentation is an essential prerequisite for liver cancer diagnosis and surgical planning. Traditionally, liver contour is delineated manually by radiologist in a slice-by-slice fashion. However, this process is time-consuming and prone to errors depending on radiologist's experience. In this paper, a modified U-Net based framework is presented, which leverages techniques from Squeeze-and-Excitation (SE) block, Atrous Spatial Pyramid Pooling (ASPP) and residual learning for accurate and robust liver Computed Tomography (CT) segmentation, and the effectiveness of the proposed method was tested on two public datasets LiTS17 and SLiver07. A new network architecture, called SAR-U-Net was designed, which is grounded in the classical U-Net. Firstly, the SE block is introduced to adaptively extract image features after each convolution in the U-Net encoder, while suppressing irrelevant regions, and highlighting features of specific segmentation task; Secondly, the ASPP is employed to replace the transition layer and the output layer, and acquire multi-scale image information via different receptive fields. Thirdly, to alleviate the gradient vanishment problem, the traditional convolution block is replaced with the residual structures, and thus prompt the network to gain accuracy from considerably increased depth. In the LiTS17 database experiment, five popular metrics were used for evaluation, including Dice coefficient, VOE, RVD, ASD and MSD . Compared with other closely related models, the proposed method achieved the highest accuracy. In addition, in the experiment of the SLiver07 dataset, compared with other closely related models, the proposed method achieved the highest segmentation accuracy except for the RVD . An improved U-Net network combining SE, ASPP, and residual structures is developed for automatic liver segmentation from CT images. This new model shows a great improvement on the accuracy compared to other closely related models, and its robustness to challenging problems, including small liver regions, discontinuous liver regions, and fuzzy liver boundaries, is also well demonstrated and validated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狗子完成签到 ,获得积分10
刚刚
塔菲尔完成签到 ,获得积分10
刚刚
1秒前
1秒前
scdd完成签到 ,获得积分10
1秒前
小北完成签到,获得积分10
1秒前
2秒前
卡皮巴拉yuan应助dora采纳,获得10
3秒前
Ado完成签到,获得积分10
3秒前
same发布了新的文献求助10
3秒前
希望天下0贩的0应助Andrew采纳,获得10
4秒前
555完成签到,获得积分10
4秒前
4秒前
yiyi完成签到,获得积分10
6秒前
塔菲尔发布了新的文献求助10
6秒前
KK完成签到,获得积分10
6秒前
6秒前
清秀的鲂完成签到,获得积分10
6秒前
6秒前
WUYONGSHUAI发布了新的文献求助10
7秒前
科研通AI2S应助景行行止采纳,获得10
7秒前
8秒前
8秒前
wwl发布了新的文献求助10
8秒前
8秒前
无敌小牛马完成签到,获得积分10
9秒前
激昂的野猪骑士完成签到 ,获得积分10
10秒前
10秒前
10秒前
11秒前
11秒前
CodeCraft应助马儿采纳,获得10
12秒前
阿翼发布了新的文献求助10
12秒前
哈哈发布了新的文献求助10
12秒前
12秒前
accpeted完成签到,获得积分10
13秒前
7123发布了新的文献求助10
13秒前
KK发布了新的文献求助10
14秒前
14秒前
14秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805726
求助须知:如何正确求助?哪些是违规求助? 3350615
关于积分的说明 10349794
捐赠科研通 3066532
什么是DOI,文献DOI怎么找? 1683814
邀请新用户注册赠送积分活动 809142
科研通“疑难数据库(出版商)”最低求助积分说明 765377