Network pharmacology-based and molecular docking prediction of the active ingredients and mechanism of ZaoRenDiHuang capsules for application in insomnia treatment

药物数据库 小桶 系统药理学 计算生物学 联机孟德尔在人类中的遗传 药理学 药品 数据库 生物信息学 生物 基因 计算机科学 基因本体论 遗传学 基因表达 表型
作者
De Jin,Jinghua Zhang,Yuqing Zhang,Xuedong An,Shenghui Zhao,Liyun Duan,Yuehong Zhang,Zhong Zhen,Fengmei Lian,Xiaolin Tong
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:135: 104562-104562 被引量:38
标识
DOI:10.1016/j.compbiomed.2021.104562
摘要

The ZaoRenDiHuang (ZRDH) capsule is widely used in clinical practice and has significant therapeutic effects on insomnia. However, its active ingredients and mechanisms of action for insomnia remain unknown. In this study, network pharmacology was employed to elucidate the potential anti-insomnia mechanisms of ZRDH.The potential active ingredients of ZRDH were obtained from the Traditional Chinese Medicine Systems Pharmacology Database. Possible targets were predicted using SwissTargetPrediction tools. The insomnia-related targets were identified using the therapeutic target database, Drugbank database, Online Mendelian Inheritance in Man database, and gene-disease associations database. A compound-target-disease network was constructed using Cytoscape for visualization. Additionally, the protein functional annotation and identification of signaling pathways of potential targets were performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses using the Metascape platform.In this study, 61 anti-insomnia components and 65 anti-insomnia targets of ZRDH were filtered through database mining. The drug-disease network was constructed with five key components. Sixty-five key targets were identified using topological analysis. Docking studies indicated that bioactive compounds could stably bind to the pockets of target proteins. Through data mining and network analysis, the GO terms and KEGG annotation suggested that the neuroactive ligand-receptor interaction, serotonergic synapse CAMP signaling, HIF-1a signaling, and toll-like receptor signaling pathways play vital roles against insomnia.The potential mechanisms of ZRDH treatment for insomnia involve multiple components, targets, and pathways. These findings provide a reference for further investigations into the mechanisms underlying ZRDH treatment of insomnia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
四叶草完成签到,获得积分10
刚刚
念所三旬发布了新的文献求助100
1秒前
彭于晏应助DrW1111采纳,获得10
1秒前
wocao发布了新的文献求助10
1秒前
2秒前
正直冬灵发布了新的文献求助10
2秒前
2秒前
2秒前
jinyue完成签到 ,获得积分10
2秒前
李笑完成签到,获得积分10
3秒前
tree完成签到,获得积分10
3秒前
雨相所至应助鹤昀采纳,获得10
3秒前
大气的半双完成签到,获得积分10
3秒前
4秒前
YXZ完成签到,获得积分10
4秒前
眼睛大花生完成签到,获得积分10
5秒前
今何在完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
mengdewen发布了新的文献求助30
6秒前
szxnb666完成签到,获得积分10
7秒前
8秒前
YXZ发布了新的文献求助10
8秒前
leq发布了新的文献求助10
9秒前
涯欤应助大反应釜采纳,获得20
9秒前
9秒前
9秒前
han发布了新的文献求助10
10秒前
huxuehong完成签到 ,获得积分10
10秒前
szxnb666发布了新的文献求助10
10秒前
Yaaaaa发布了新的文献求助10
11秒前
mengdewen完成签到,获得积分10
11秒前
Thien应助念所三旬采纳,获得10
12秒前
zsw完成签到,获得积分10
12秒前
choudandan4401完成签到,获得积分10
12秒前
13秒前
14秒前
传奇发布了新的文献求助10
14秒前
SciGPT应助cj采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Treatise on Geochemistry (Third edition) 1600
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4714579
求助须知:如何正确求助?哪些是违规求助? 4077366
关于积分的说明 12609877
捐赠科研通 3780423
什么是DOI,文献DOI怎么找? 2088195
邀请新用户注册赠送积分活动 1114505
科研通“疑难数据库(出版商)”最低求助积分说明 991789