转录组
计算生物学
编码(社会科学)
计算机科学
主成分分析
基因
功能(生物学)
数据挖掘
生物
遗传学
基因表达
人工智能
数学
统计
作者
Carlos G. Urzúa-Traslaviña,V. C. Leeuwenburgh,Arkajyoti Bhattacharya,Stefan Loipfinger,Marcel A.T.M. van Vugt,Elisabeth G.E. de Vries,Rudolf S.N. Fehrmann
标识
DOI:10.1038/s41467-021-21671-w
摘要
Abstract The interpretation of high throughput sequencing data is limited by our incomplete functional understanding of coding and non-coding transcripts. Reliably predicting the function of such transcripts can overcome this limitation. Here we report the use of a consensus independent component analysis and guilt-by-association approach to predict over 23,000 functional groups comprised of over 55,000 coding and non-coding transcripts using publicly available transcriptomic profiles. We show that, compared to using Principal Component Analysis, Independent Component Analysis-derived transcriptional components enable more confident functionality predictions, improve predictions when new members are added to the gene sets, and are less affected by gene multi-functionality. Predictions generated using human or mouse transcriptomic data are made available for exploration in a publicly available web portal.
科研通智能强力驱动
Strongly Powered by AbleSci AI