化学
乙二胺
吸附
表面改性
双金属片
胺气处理
分子
金属有机骨架
无机化学
哌嗪
高分子化学
金属
有机化学
吸附
物理化学
作者
Timothy Steenhaut,Luca Fusaro,Koen Robeyns,Séraphin Lacour,Xiao Li,Julien G. Mahy,Véronique Louppe,Nicolas Grégoire,Gabriella Barozzino‐Consiglio,Jean-François Statsyns,Carmela Aprile,Yaroslav Filinchuk,Sophie Hermans
出处
期刊:Inorganic Chemistry
[American Chemical Society]
日期:2021-10-15
卷期号:60 (21): 16666-16677
被引量:8
标识
DOI:10.1021/acs.inorgchem.1c02568
摘要
The metal sites of MIL-100(Fe), MIL-100(Fe,Al), and MIL-100(Al) metal-organic frameworks (MOFs) were decorated with ethylenediamine (EN). Interestingly, the Al-containing MOFs presented hierarchized porosity, and their structural integrity was maintained upon functionalization. Solution and solid-state NMR confirmed the grafting efficiency in the case of MIL-100(Al) and the presence of a free amine group. It was shown that MIL-100(Al) can be functionalized by only one EN molecule in each trimeric Al3O cluster unit, whereas the other two aluminum sites are occupied by a hydroxyl and a water molecule. The -NH2 sites of the grafted ethylenediamine can be used for further postfunctionalization through amine chemistry and are responsible for the basicity of the functionalized material as well as increased affinity for CO2. Furthermore, the presence of coordinated water molecules on the Al-MOF is responsible for simultaneous Brønsted acidity. Finally, the Al-containing MOFs show an unusual carbon dioxide sorption mechanism at high pressures that distinguishes those materials from their iron and chromium counterparts and is suspected to be due to the presence of polarized Al-OH bonds.
科研通智能强力驱动
Strongly Powered by AbleSci AI