生物利用度
造粒
色谱法
溶解
差示扫描量热法
材料科学
非洛地平
溶解试验
化学
有机化学
药理学
生物制药分类系统
复合材料
热力学
放射科
医学
物理
血压
作者
Boyu Jing,Zhiyuan Wang,Rui Yang,Zheng Xia,Jia Zhao,Si Tang,Zhonggui He
标识
DOI:10.3109/03639045.2015.1058816
摘要
The novel self-microemulsifying (SME) tablets were developed to enhance the oral bioavailability of a poor water-soluble drug felodipine (FDP). Firstly, FDP was dissolved in the optimized liquid self-microemusifying drug delivery systems (SMEDDS) containing Miglyol® 812, Cremophor® RH 40, Tween 80 and Transcutol® P, and the mixture was solidified with porous silicon dioxide and crospovidone as adsorbents. Then after combining the solidified powders with other excipients, the solid SME tablets were prepared by wet granulation-compression method. The prepared tablets possessed satisfactory characterization; the droplet size of the SME tablets following self-emulsification in water was nearly equivalent to the liquid SMEDDS (68.4 ± 14.0 and 64.4 ± 12.0 nm); differential scanning calorimetry (DSC) and powder X-ray diffractometry (PXRD) analysis demonstrated that FDP in SME tablets had undergone a polymorphism transition from a crystal form to an amorphous state, which was further confirmed by transmission electron microscopy (TEM). A similar dissolution performance of SME tablets and liquid SMEDDS was also obtained under the sink condition (85% within 10 min), both significantly higher than commercial tablets. The oral bioavailability was evaluated for the SME tablets, liquid SMEDDS and commercial conventional tablets in the fasted beagle dogs. The AUC of FDP from the SME tablets was about 2-fold greater than that of conventional tablets, but no significant difference was found when compared with the liquid SMEDDS. Accordingly, these preliminary results suggest that this formulation approach offers a useful large-scale producing method to prepare the solid SME tablets from the liquid SMEDDS for oral bioavailability equivalent enhancement of poorly soluble FDP.
科研通智能强力驱动
Strongly Powered by AbleSci AI