Defining language dependent post-editing guidelines for specific content

写作风格 风格(视觉艺术) 人工智能 语法 语言学 范围(计算机科学) 计算机科学 机器翻译软件可用性 基于实例的机器翻译 自然语言处理 机器翻译 文学类 程序设计语言 艺术 哲学
作者
Seunghye Mah
出处
期刊:Babel [John Benjamins Publishing Company]
卷期号:66 (4-5): 811-828 被引量:2
标识
DOI:10.1075/babel.00174.mah
摘要

Abstract The rapid development of neural machine translation systems and the emergence of the e-book have broadened the scope of text types that can be translated by machines. At the early stage of the machine’s infiltration into the translation field, target texts were mainly technical texts such as patents, instruction manuals, etc. Literary texts have been considered as the last bastion of human translation because the machine translation (MT) has produced word-for-word translation, unsuitable for literary texts with distinct stylistic elements. However, it turns out that the field of literary translation was not immune to the rise of MT. Style is one of the critical elements in literary texts, but it has been dismissed in the existing MT post-editing guidelines. Therefore, this research attempts to provide methodological ideas about how to come up with a machine translation post-editing guideline (MTPE) for style improvement especially for language pairs with divergent syntax and semantics like English and Korean. First, the linguistic and cultural differences in writing styles are sorted out based on previous research. Second, the different ways in which human translators address writing style are investigated. Third, the strategies that human translators employ in their translations are applied to machine translation post-editing to demonstrate how the strategies can be incorporated into English-Korean MTPE to improve style. This preliminary research would lay the groundwork for refining post-editing style guidelines and for accumulating manually post-edited data for style improvement, which would be conducive to building and customizing automatic post-editing systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
摇光完成签到,获得积分10
刚刚
bind完成签到,获得积分10
1秒前
zhang完成签到,获得积分10
1秒前
甜甜乌冬面完成签到,获得积分10
2秒前
咕咕发布了新的文献求助10
3秒前
Lucas应助快乐疯样采纳,获得10
5秒前
6秒前
红蜻蜓完成签到,获得积分10
7秒前
喃义完成签到,获得积分10
8秒前
8秒前
ycccc99发布了新的文献求助10
10秒前
11秒前
甜蜜的楷瑞完成签到,获得积分0
11秒前
111发布了新的文献求助10
12秒前
13秒前
shanmen完成签到,获得积分10
14秒前
整齐尔白完成签到,获得积分10
14秒前
gelinhao完成签到,获得积分10
14秒前
凤迎雪飘完成签到,获得积分10
14秒前
发酒疯很方便吃完成签到,获得积分10
15秒前
ASA发布了新的文献求助10
15秒前
哈哈发布了新的文献求助10
15秒前
噼里啪啦完成签到 ,获得积分10
16秒前
冰箱上的贞子完成签到,获得积分10
17秒前
mrwang发布了新的文献求助200
18秒前
进击的巨人完成签到 ,获得积分10
18秒前
sun发布了新的文献求助10
18秒前
Luna完成签到 ,获得积分10
18秒前
19秒前
20秒前
21秒前
Da完成签到,获得积分10
21秒前
21秒前
启程牛牛完成签到,获得积分0
22秒前
23秒前
快乐疯样发布了新的文献求助10
24秒前
ASA完成签到,获得积分10
24秒前
感性的强炫应助denghuiying采纳,获得20
24秒前
漂亮访云发布了新的文献求助10
24秒前
25秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1018
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4081317
求助须知:如何正确求助?哪些是违规求助? 3620800
关于积分的说明 11487284
捐赠科研通 3336219
什么是DOI,文献DOI怎么找? 1834056
邀请新用户注册赠送积分活动 902868
科研通“疑难数据库(出版商)”最低求助积分说明 821313