计算机科学
人工神经网络
人工智能
功能(生物学)
鉴定(生物学)
模型预测控制
图层(电子)
控制(管理)
数据建模
机器学习
控制工程
工程类
材料科学
纳米技术
生物
进化生物学
数据库
植物
作者
Uduak Inyang-Udoh,Sandipan Mishra
标识
DOI:10.23919/acc45564.2020.9147313
摘要
This paper presents a learning-based approach to modeling and control of inkjet 3D printing. First, we propose and experimentally validate a learning-based model for inkjet 3D printing. The proposed model uses a physics-based model paradigm that has been reformulated into a neural-network-like structure. This formulation enables back-propagation and the associated benefits of data-driven model identification while retaining physical interpretation of the learned model itself. Next, we propose and demonstrate a predictive control algorithm that leverages the neural-network-like structure of the model. Back-propagation is used for efficient gradient calculations to determine optimal control inputs, namely droplet patterns for subsequent layer(s), to optimize a quadratic cost function.
科研通智能强力驱动
Strongly Powered by AbleSci AI