Mammography-based radiomic analysis for predicting benign BI-RADS category 4 calcifications

列线图 医学 乳腺摄影术 双雷达 放射科 逻辑回归 接收机工作特性 队列 乳房成像 乳腺癌 病理 肿瘤科 癌症 内科学
作者
Chuqian Lei,Wei Wei,Zhenyu Liu,Qianqian Xiong,Ciqiu Yang,Mei Yang,Liulu Zhang,Teng Zhu,Xiaosheng Zhuang,Chunling Liu,Zaiyi Liu,Jie Tian,Kun Wang
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:121: 108711-108711 被引量:42
标识
DOI:10.1016/j.ejrad.2019.108711
摘要

We developed and validated a radiomic model based on mammography and assessed its value for predicting the pathological diagnosis of Breast Imaging Reporting and Data System (BI-RADS) category 4 calcifications.Patients with a total of 212 eligible calcifications were recruited (159 cases in the primary cohort and 53 cases in the validation cohort). In total, 8286 radiomic features were extracted from the craniocaudal (CC) and mediolateral oblique (MLO) images. Machine learning was used to select features and build a radiomic signature. The clinical risk factors were selected from the independent clinical factors through logistic regression analyses. The radiomic nomogram incorporated the radiomic signature and an independent clinical risk factor. The diagnostic performance of the radiomic model and the radiologists' empirical prediction model was evaluated by the area under the receiver operating characteristic curve (AUC). The differences between the various AUCs were compared with DeLong's test.Six radiomic features and the menopausal state were included in the radiomic nomogram, which discriminated benign calcifications from malignant calcifications with an AUC of 0.80 in the validation cohort. The difference between the classification results of the radiomic nomogram and that of radiologists was significant (p < 0.05). Particularly for patients with calcifications that are negative on ultrasounds but can be detected by mammography (MG+/US- calcifications), the identification ability of the radiomic nomogram was very strong.The mammography-based radiomic nomogram is a potential tool to distinguish benign calcifications from malignant calcifications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刻苦的青争完成签到 ,获得积分10
1秒前
钉钉完成签到,获得积分10
2秒前
2秒前
longlingsheng完成签到,获得积分10
3秒前
4秒前
6秒前
悠狸完成签到,获得积分10
6秒前
共享精神应助孔德颍采纳,获得10
9秒前
常常完成签到,获得积分10
9秒前
钉钉发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
11秒前
001完成签到,获得积分10
11秒前
g0123完成签到,获得积分10
11秒前
前进的小宅熊完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
13秒前
anqqq完成签到,获得积分20
13秒前
无心的棉花糖应助张大宝采纳,获得10
13秒前
14秒前
1111应助nini采纳,获得10
15秒前
123123发布了新的文献求助10
15秒前
123123发布了新的文献求助10
15秒前
15秒前
Capacition6完成签到,获得积分10
15秒前
狗小是的念着倒完成签到,获得积分10
16秒前
123123发布了新的文献求助10
16秒前
16秒前
冬雪完成签到 ,获得积分10
16秒前
123123发布了新的文献求助10
17秒前
123123发布了新的文献求助10
17秒前
行走的绅士完成签到,获得积分10
17秒前
顾矜应助fish采纳,获得10
18秒前
孔德颍完成签到,获得积分10
18秒前
虚心的芹完成签到,获得积分20
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5258672
求助须知:如何正确求助?哪些是违规求助? 4420629
关于积分的说明 13760748
捐赠科研通 4294297
什么是DOI,文献DOI怎么找? 2356344
邀请新用户注册赠送积分活动 1352673
关于科研通互助平台的介绍 1313526