Circular Convolutional Neural Networks for Panoramic Images and Laser Data

卷积神经网络 MNIST数据库 卷积码 计算机科学 人工智能 模式识别(心理学) 推论 深度学习 分割
作者
Stefan Schubert,Peer Neubert,Johannes Poschmann,Peter Pretzel
出处
期刊:IEEE Intelligent Vehicles Symposium 卷期号:: 653-660 被引量:11
标识
DOI:10.1109/ivs.2019.8813862
摘要

Circular Convolutional Neural Networks (CCNN) are an easy to use alternative to CNNs for input data with wrap-around structure like 360°images and multi-layer laserscans. Although circular convolutions have been used in neural networks before, a detailed description and analysis is still missing. This paper closes this gap by defining circular convolutional and circular transposed convolutional layers as the replacement of their linear counterparts, and by identifying pros and cons of applying CCNNs. We experimentally evaluate their properties using a circular MNIST classification and a Velodyne laserscanner segmentation dataset. For the latter, we replace the convolutional layers in two state-of-the-art networks with the proposed circular convolutional layers. Compared to the standard CNNs, the resulting CCNNs show improved recognition rates in image border areas. This is essential to prevent blind spots in the environmental perception. Further, we present and evaluate how weight transfer can be used to obtain a CCNN from an available, readily trained CNN. Compared to alternative approaches (e.g. input padding), our experiments show benefits of CCNNs and transfered CCNNs regarding simplicity of usage (once the layer implementations are available), performance and runtime for training and inference. Implementations for Keras with Tensorflow are provided online22Open source code for Circular Convolutional and Transposed Convolutional Layers and MNIST example in Keras with Tensorflow: http://www.tu-chemnitz.de/etit/proaut/ccnn.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小发布了新的文献求助10
刚刚
aa发布了新的文献求助10
1秒前
1秒前
River完成签到,获得积分10
2秒前
成天发布了新的文献求助10
2秒前
黄酒十二刀完成签到,获得积分20
2秒前
sunnnn完成签到,获得积分10
2秒前
3秒前
橙子发布了新的文献求助10
3秒前
3秒前
emile发布了新的文献求助10
4秒前
桐桐应助shuke采纳,获得10
4秒前
2309完成签到,获得积分10
4秒前
清秀凡霜发布了新的文献求助10
4秒前
完美世界应助太叔从蓉采纳,获得10
5秒前
5秒前
orangel发布了新的文献求助10
5秒前
庚子鼠完成签到,获得积分10
6秒前
安小野发布了新的文献求助10
7秒前
小胡小瑞完成签到,获得积分20
7秒前
Disci完成签到,获得积分10
7秒前
涵泽发布了新的文献求助10
7秒前
可爱的函函应助egg采纳,获得10
8秒前
8秒前
嘻哈发布了新的文献求助10
9秒前
9秒前
9秒前
21完成签到,获得积分10
10秒前
10秒前
11秒前
大曾完成签到,获得积分20
11秒前
11秒前
木南楠a完成签到,获得积分10
12秒前
moon发布了新的文献求助10
12秒前
无辜的夏兰完成签到,获得积分10
12秒前
12秒前
Owen应助huohuo采纳,获得10
13秒前
张白发布了新的文献求助10
13秒前
14秒前
Youdge完成签到,获得积分10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797313
求助须知:如何正确求助?哪些是违规求助? 3342739
关于积分的说明 10312854
捐赠科研通 3059478
什么是DOI,文献DOI怎么找? 1678895
邀请新用户注册赠送积分活动 806277
科研通“疑难数据库(出版商)”最低求助积分说明 763043