Enhanced oil-in-water droplet generation in a T-junction microchannel using water-based nanofluids with shear-thinning behavior: A numerical study

纳米流体 微通道 剪切减薄 粘度 牛顿流体 机械 剪切速率 热力学 流变学 材料科学 毛细管作用 纳米颗粒 物理 纳米技术
作者
Mohsen Besanjideh,Amir Shamloo,Siamak Kazemzadeh Hannani
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:33 (1) 被引量:47
标识
DOI:10.1063/5.0030676
摘要

Nanofluids are widely used as the continuous phase during droplet formation in microsystems due to their impressive features such as excellent thermal, magnetic, and interfacial properties. Although it is well-known that nanofluids are susceptible to exhibit non-Newtonian behavior even at a low concentration of nanoparticles, effects of non-Newtonian behavior of nanofluids have not been studied on droplet formation thus far. In this study, oil-in-water droplet formation with a relatively high viscosity ratio of the immiscible phases was studied numerically in a T-junction microchannel. To inspect the non-Newtonian effects of aqueous nanofluids on droplet formation, empirical data on the rheological behavior of various types of nanofluids were explored. Finally, two water-based nanofluids with shear-thinning behavior were chosen as the continuous phase for numerical simulations. The numerical procedure was validated against some experimental models. Afterward, droplet length was determined for different capillary numbers, flow rate ratios, and nanoparticle concentrations, and some scaling laws were proposed to predict droplet length in different droplet formation regimes. The results showed that using nanofluids with shear-thinning behavior as the continuous phase results in a decrease in droplet size, and this reduction is more intensified as the concentration of nanoparticles increases. Furthermore, it was observed that the change in the droplet formation regime through manipulating the flow rates does not occur easily when pure water is used as the continuous fluid due to the high viscosity ratio of the immiscible phases. However, when nanofluids are employed as the continuous fluid, the droplet formation regime can be changed more easily due to the enhancement of viscous shear force in the continuous phase. Hence, in addition to the well-known advantages of nanofluids in droplet formation processes, nanofluids can be raised as a new alternative for the continuous phases to administer the droplet size and formation regimes rather than using chemical additives for tuning the rheological properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leaolf完成签到,获得积分0
6秒前
Yina完成签到 ,获得积分10
7秒前
优雅的平安完成签到 ,获得积分10
7秒前
cxk完成签到 ,获得积分10
9秒前
风中的蜜蜂完成签到,获得积分10
9秒前
南木完成签到 ,获得积分10
10秒前
onevip完成签到,获得积分0
10秒前
汤圆完成签到 ,获得积分10
11秒前
灵巧乐松完成签到 ,获得积分10
12秒前
Zhaowx完成签到,获得积分10
13秒前
dream完成签到 ,获得积分10
19秒前
喻紫寒完成签到 ,获得积分10
19秒前
juliar完成签到 ,获得积分10
21秒前
闫佳美完成签到,获得积分10
21秒前
福娃完成签到,获得积分10
25秒前
小张完成签到 ,获得积分10
26秒前
一叶知秋应助科研通管家采纳,获得10
26秒前
秋迎夏完成签到,获得积分0
26秒前
wuludie发布了新的文献求助10
31秒前
练得身形似鹤形完成签到 ,获得积分10
33秒前
科研通AI2S应助ceeray23采纳,获得30
36秒前
范白容完成签到 ,获得积分0
38秒前
务实青筠完成签到 ,获得积分10
39秒前
轩辕德地完成签到,获得积分10
39秒前
gscholer完成签到,获得积分10
42秒前
负责冰海完成签到,获得积分10
46秒前
汕头凯奇完成签到,获得积分10
49秒前
欢呼妙菱完成签到,获得积分10
49秒前
Rocky完成签到 ,获得积分10
52秒前
俏皮元珊完成签到 ,获得积分10
52秒前
熊雅完成签到,获得积分10
52秒前
53秒前
wuludie完成签到,获得积分0
54秒前
xmhxpz完成签到,获得积分10
56秒前
myduty完成签到 ,获得积分10
57秒前
Billy应助ceeray23采纳,获得20
58秒前
光亮若翠完成签到,获得积分10
59秒前
shawn完成签到 ,获得积分10
59秒前
Smoiy完成签到 ,获得积分10
59秒前
Ying完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
ICDD求助cif文件 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Secrets of Successful Product Launches 300
The Rise & Fall of Classical Legal Thought 260
Encyclopedia of Renewable Energy, Sustainability and the Environment Volume 1: Sustainable Development and Bioenergy Solutions 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4344773
求助须知:如何正确求助?哪些是违规求助? 3851537
关于积分的说明 12021710
捐赠科研通 3493061
什么是DOI,文献DOI怎么找? 1916815
邀请新用户注册赠送积分活动 959774
科研通“疑难数据库(出版商)”最低求助积分说明 859875