静电纺丝
材料科学
佩多:嘘
纳米纤维
化学工程
接触角
乙二醇
复合数
聚乙烯醇
聚合物
复合材料
工程类
作者
Rose‐Marie Latonen,Jose Antonio Wrzosek Cabrera,Sara Lund,Sergey Kosourov,Sindhujaa Vajravel,Zhanna A. Boeva,Xiaoju Wang,Chunlin Xu,Yagut Allahverdiyeva
标识
DOI:10.1021/acsabm.0c00989
摘要
Electrically conductive composite nanofibers were fabricated using poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT–PSS) and cellulose nanofibrils (CNFs) via the electrospinning technique. Poly(ethylene oxide) (PEO) was used to assist the electrospinning process, and poly(ethylene glycol) diglycidyl ether was used to induce chemical cross-linking, enabling stability of the formed fibrous mats in water. The experimental parameters regarding the electrospinning polymer dispersion and electrospinning process were carefully studied to achieve a reproducible method to obtain bead-free nanofibrous mats with high stability after water contact, with an electrical conductivity of 13 ± 5 S m–1, thus making them suitable for bioelectrochemical applications. The morphology of the electrospun nanofibers was characterized by scanning electron microscopy, and the C/S ratio was determined with energy dispersive X-ray analysis. Cyclic voltammetric studies showed that the PEDOT–PSS/CNF/PEO composite fibers exhibited high electroactivity and high stability in water for at least two months. By infrared spectroscopy, the slightly modified fiber morphology after water contact was demonstrated to be due to dissolution of some part of the PEO in the fiber structure. The biocompatibility of the PEDOT–PSS/CNF/PEO composite fibers when used as an electroconductive substrate to immobilize microalgae and cyanobacteria in a photosynthetic bioelectrochemical cell was also demonstrated.
科研通智能强力驱动
Strongly Powered by AbleSci AI