SA-LuT-Nets: Learning Sample-Adaptive Intensity Lookup Tables for Brain Tumor Segmentation

查阅表格 分割 计算机科学 人工智能 图像分割 样品(材料) 强度映射 表(数据库) 功能(生物学) 模式识别(心理学) 计算机视觉 数据挖掘 物理 银河系 生物 进化生物学 量子力学 化学 色谱法 程序设计语言 红移
作者
Biting Yu,Luping Zhou,Lei Wang,Wanqi Yang,Ming Yang,Pierrick Bourgeat,Jürgen Fripp
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (5): 1417-1427 被引量:32
标识
DOI:10.1109/tmi.2021.3056678
摘要

In clinics, the information about the appearance and location of brain tumors is essential to assist doctors in diagnosis and treatment. Automatic brain tumor segmentation on the images acquired by magnetic resonance imaging (MRI) is a common way to attain this information. However, MR images are not quantitative and can exhibit significant variation in signal depending on a range of factors, which increases the difficulty of training an automatic segmentation network and applying it to new MR images. To deal with this issue, this paper proposes to learn a sample-adaptive intensity lookup table (LuT) that dynamically transforms the intensity contrast of each input MR image to adapt to the following segmentation task. Specifically, the proposed deep SA-LuT-Net framework consists of a LuT module and a segmentation module, trained in an end-to-end manner: the LuT module learns a sample-specific nonlinear intensity mapping function through communication with the segmentation module, aiming at improving the final segmentation performance. In order to make the LuT learning sample-adaptive, we parameterize the intensity mapping function by exploring two families of non-linear functions (i.e., piece-wise linear and power functions) and predict the function parameters for each given sample. These sample-specific parameters make the intensity mapping adaptive to samples. We develop our SA-LuT-Nets separately based on two backbone networks for segmentation, i.e., DMFNet and the modified 3D Unet, and validate them on BRATS2018 and BRATS2019 datasets for brain tumor segmentation. Our experimental results clearly demonstrate the superior performance of the proposed SA-LuT-Nets using either single or multiple MR modalities. It not only significantly improves the two baselines (DMFNet and the modified 3D Unet), but also wins a set of state-of-the-art segmentation methods. Moreover, we show that, the LuTs learnt using one segmentation model could also be applied to improving the performance of another segmentation model, indicating the general segmentation information captured by LuTs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
DDD关注了科研通微信公众号
1秒前
YX发布了新的文献求助10
1秒前
1秒前
2秒前
幸运星发布了新的文献求助10
2秒前
天天快乐应助高高采纳,获得10
3秒前
aero完成签到 ,获得积分10
4秒前
11111完成签到,获得积分10
5秒前
Ori发布了新的文献求助10
5秒前
巴斯光年完成签到,获得积分10
5秒前
6秒前
陶醉灵槐发布了新的文献求助10
6秒前
yy76完成签到,获得积分10
7秒前
7秒前
珍珠奶茶发布了新的文献求助10
7秒前
情怀应助瀼瀼采纳,获得10
8秒前
9秒前
zihi发布了新的文献求助10
10秒前
chy完成签到 ,获得积分10
10秒前
11秒前
11秒前
boli发布了新的文献求助30
12秒前
珍珠奶茶完成签到,获得积分10
14秒前
hhuajw完成签到,获得积分10
15秒前
科研通AI5应助无奈秋荷采纳,获得10
17秒前
在水一方应助科研通管家采纳,获得10
17秒前
YINZHE应助科研通管家采纳,获得20
17秒前
wanci应助科研通管家采纳,获得10
17秒前
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
taco完成签到,获得积分20
17秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
李健应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
bkagyin应助科研通管家采纳,获得10
18秒前
spujo应助科研通管家采纳,获得10
18秒前
18秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794881
求助须知:如何正确求助?哪些是违规求助? 3339777
关于积分的说明 10297235
捐赠科研通 3056415
什么是DOI,文献DOI怎么找? 1676988
邀请新用户注册赠送积分活动 805034
科研通“疑难数据库(出版商)”最低求助积分说明 762286