Drug repurposing for COVID-19 via knowledge graph completion

药物重新定位 计算机科学 2019年冠状病毒病(COVID-19) 重新调整用途 人工智能 图形 知识图 药品 数据科学 医学 传染病(医学专业) 理论计算机科学 药理学 工程类 疾病 病理 废物管理
作者
Rui Zhang,Dimitar Hristovski,Dalton Schutte,Andrej Kastrin,Marcelo Fiszman,Halil Kilicoglu
出处
期刊:Journal of Biomedical Informatics [Elsevier BV]
卷期号:115: 103696-103696 被引量:169
标识
DOI:10.1016/j.jbi.2021.103696
摘要

Objective: To discover candidate drugs to repurpose for COVID-19 using literature-derived knowledge and knowledge graph completion methods. Methods: We propose a novel, integrative, and neural network-based literature-based discovery (LBD) approach to identify drug candidates from both PubMed and COVID-19-focused research literature. Our approach relies on semantic triples extracted using SemRep (via SemMedDB). We identified an informative subset of semantic triples using filtering rules and an accuracy classifier developed on a BERT variant, and used this subset to construct a knowledge graph. Five SOTA, neural knowledge graph completion algorithms were used to predict drug repurposing candidates. The models were trained and assessed using a time slicing approach and the predicted drugs were compared with a list of drugs reported in the literature and evaluated in clinical trials. These models were complemented by a discovery pattern-based approach. Results: Accuracy classifier based on PubMedBERT achieved the best performance (F1= 0.854) in classifying semantic predications. Among five knowledge graph completion models, TransE outperformed others (MR = 0.923, Hits@1=0.417). Some known drugs linked to COVID-19 in the literature were identified, as well as some candidate drugs that have not yet been studied. Discovery patterns enabled generation of plausible hypotheses regarding the relationships between the candidate drugs and COVID-19. Among them, five highly ranked and novel drugs (paclitaxel, SB 203580, alpha 2-antiplasmin, pyrrolidine dithiocarbamate, and butylated hydroxytoluene) with their mechanistic explanations were further discussed. Conclusion: We show that an LBD approach can be feasible for discovering drug candidates for COVID-19, and for generating mechanistic explanations. Our approach can be generalized to other diseases as well as to other clinical questions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
shorting发布了新的文献求助10
1秒前
刘金超发布了新的文献求助30
2秒前
在水一方应助沉静弘文采纳,获得10
3秒前
爱卿5271发布了新的文献求助10
3秒前
lucas发布了新的文献求助10
5秒前
kaokao发布了新的文献求助10
6秒前
6秒前
Li梨发布了新的文献求助10
7秒前
完美世界应助小徐采纳,获得10
7秒前
浅听风吟完成签到,获得积分10
8秒前
8秒前
英俊的铭应助儿乖乖采纳,获得10
8秒前
李爱国应助Ww采纳,获得10
9秒前
10秒前
14秒前
打工小房应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
大个应助科研通管家采纳,获得10
14秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
许黎应助科研通管家采纳,获得10
14秒前
科研通AI2S应助yy采纳,获得10
14秒前
15秒前
在水一方应助科研通管家采纳,获得10
15秒前
ding应助科研通管家采纳,获得10
15秒前
Owen应助科研通管家采纳,获得10
15秒前
15秒前
晴天应助科研通管家采纳,获得10
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
15秒前
完美世界应助科研通管家采纳,获得10
15秒前
15秒前
麦奇发布了新的文献求助10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
菠菜吖发布了新的文献求助50
15秒前
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4724537
求助须知:如何正确求助?哪些是违规求助? 4082894
关于积分的说明 12627052
捐赠科研通 3788803
什么是DOI,文献DOI怎么找? 2092505
邀请新用户注册赠送积分活动 1118238
科研通“疑难数据库(出版商)”最低求助积分说明 994869