Applied AI in instrumentation and measurement: The deep learning revolution

仪表(计算机编程) 人工智能 领域(数学) 工业革命 计算机科学 工程类 数据科学 历史 考古 数学 操作系统 纯数学
作者
Mounib Khanafer,Shervin Shirmohammadi
出处
期刊:IEEE Instrumentation & Measurement Magazine [Institute of Electrical and Electronics Engineers]
卷期号:23 (6): 10-17 被引量:110
标识
DOI:10.1109/mim.2020.9200875
摘要

In the last few years, hardly a day goes by that we do not hear about the latest advancements and improvements that Artificial Intelligence (AI) has brought to a wide spectrum of domains: from technology and medicine to science and sociology, and many others. AI is one of the core enabling components of the fourth industrial revolution that we are currently witnessing, and the applications of AI are truly transforming our world and impacting all facets of society, economy, living, working, and technology. The field of Instrumentation and Measurement (I&M) is no exception, and has already been impacted by Applied AI. In this article, we give an overview of Applied AI and its usage in I&M. We then take a deeper look at the I&M applications of one specific AI method: Deep Learning (DL), which has recently revolutionized the field of AI. Our survey of DL papers published in the IEEE Transactions on Instrumentation and Measurement (IEEE TIM) and IEEE Instrumentation & Measurement Magazine showed that, since 2017, there is a very strong interest in applying DL methods to I&M, in terms of measurement, calibration, and other I&M challenges. In particular, of the 32 surveyed papers, 75% were published in 2017 or later, and a remarkable 50% were published in 2019 alone. Considering that 2019 was not yet finished when we were writing this article, the recent exponential interest in and impact of DL in I&M is a very evident trend. We also found that although DL is used in a variety of I&M topics, a considerable portion of DL in I&M focuses on Vision Based Measurement (VBM) systems (around 28%) and fault/defect diagnosis/detection/prediction (around 25%). Finally, we found that Convolutional Neural Networks are the most widely used DL technique in I&M, especially in VBM. But to explain all of the above findings, we first need to understand AI itself and what we mean by it in its applied context. So let us begin our discussion with Applied AI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助土星采纳,获得10
刚刚
George发布了新的文献求助10
刚刚
1秒前
ding应助萤火采纳,获得10
1秒前
2秒前
3秒前
111完成签到,获得积分10
3秒前
4秒前
4秒前
英姑应助朴素的大树采纳,获得10
6秒前
6秒前
tian发布了新的文献求助10
7秒前
不会写诗完成签到 ,获得积分10
7秒前
7秒前
8秒前
LMBE1K完成签到 ,获得积分10
8秒前
青柠关注了科研通微信公众号
9秒前
Stevin发布了新的文献求助10
10秒前
11秒前
pluto应助管夜白采纳,获得30
11秒前
11秒前
11秒前
11秒前
无奈的萍发布了新的文献求助10
12秒前
13秒前
土拨鼠发布了新的文献求助10
13秒前
健壮不斜发布了新的文献求助30
13秒前
16秒前
bzlish发布了新的文献求助10
17秒前
YU发布了新的文献求助10
17秒前
萤火发布了新的文献求助10
17秒前
自由山槐发布了新的文献求助10
17秒前
18秒前
Zhang完成签到,获得积分10
19秒前
20秒前
huihui完成签到 ,获得积分10
20秒前
飞向天空的牛完成签到,获得积分10
21秒前
土星发布了新的文献求助10
22秒前
22秒前
wangjunhao完成签到,获得积分10
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783723
求助须知:如何正确求助?哪些是违规求助? 3328883
关于积分的说明 10239212
捐赠科研通 3044381
什么是DOI,文献DOI怎么找? 1670946
邀请新用户注册赠送积分活动 799982
科研通“疑难数据库(出版商)”最低求助积分说明 759172