Defining colon cancer biomarkers by using deep learning

结直肠癌 医学 肿瘤科 深度学习 生物标志物 癌症 生物标志物发现 内科学 辅助治疗 人工智能 疾病 计算机科学 蛋白质组学 生物化学 化学 基因
作者
Adrian V. Specogna,Frank A. Sinicrope
出处
期刊:The Lancet [Elsevier BV]
卷期号:395 (10221): 314-316 被引量:12
标识
DOI:10.1016/s0140-6736(20)30034-9
摘要

Refined approaches are needed to better risk-stratify patients with colorectal cancer for prognosis. No predictive biomarkers of treatment efficacy have yet been identified in patients with non-metastatic disease. Ole-Johan Skrede and colleagues 1 Skrede O-J De Raedt S Kleppe A et al. Deep learning for prediction of colorectal cancer outcome: a discovery and validation study. Lancet. 2020; 395: 350-360 Summary Full Text Full Text PDF PubMed Scopus (191) Google Scholar in The Lancet report on a computer-generated biomarker, the DoMore-v1-colorectal cancer (DoMore-v1-CRC) classifier, which was derived from conventionally stained histopathological images by using deep learning methods. This study adds value to the application of deep learning methods in cancer research as it stimulates a discussion on the potential use of automated methods to generate new information from existing pathological data. Deep learning for prediction of colorectal cancer outcome: a discovery and validation studyA clinically useful prognostic marker was developed using deep learning allied to digital scanning of conventional haematoxylin and eosin stained tumour tissue sections. The assay has been extensively evaluated in large, independent patient populations, correlates with and outperforms established molecular and morphological prognostic markers, and gives consistent results across tumour and nodal stage. The biomarker stratified stage II and III patients into sufficiently distinct prognostic groups that potentially could be used to guide selection of adjuvant treatment by avoiding therapy in very low risk groups and identifying patients who would benefit from more intensive treatment regimes. Full-Text PDF
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小丛完成签到 ,获得积分10
4秒前
7秒前
7秒前
8秒前
乐乐应助清新的音响采纳,获得10
9秒前
一条咸鱼发布了新的文献求助10
11秒前
14秒前
15秒前
16秒前
深情安青应助兴奋水池采纳,获得10
19秒前
九九发布了新的文献求助10
20秒前
21秒前
22秒前
22秒前
xr发布了新的文献求助10
24秒前
小透明发布了新的文献求助30
25秒前
26秒前
BY完成签到,获得积分10
26秒前
Perry发布了新的文献求助10
26秒前
逢考必过发布了新的文献求助10
27秒前
29秒前
懵懂的翼发布了新的文献求助10
32秒前
搞怪的醉波完成签到,获得积分10
33秒前
35秒前
Jasper应助搞怪的醉波采纳,获得10
37秒前
传奇3应助luchang123qq采纳,获得10
37秒前
一条咸鱼完成签到,获得积分10
38秒前
青海盐湖所李阳阳完成签到 ,获得积分10
38秒前
小蘑菇应助xr采纳,获得10
39秒前
小蘑菇应助清新的音响采纳,获得10
39秒前
1MENINA1完成签到 ,获得积分10
39秒前
40秒前
执着的岂愈完成签到,获得积分10
40秒前
乐乐应助七月采纳,获得10
41秒前
bkagyin应助安龙王子采纳,获得10
41秒前
顺心浩阑应助科研通管家采纳,获得20
42秒前
无花果应助科研通管家采纳,获得10
42秒前
今后应助科研通管家采纳,获得30
42秒前
小马甲应助科研通管家采纳,获得10
42秒前
所所应助科研通管家采纳,获得10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778155
求助须知:如何正确求助?哪些是违规求助? 3323817
关于积分的说明 10215889
捐赠科研通 3038977
什么是DOI,文献DOI怎么找? 1667739
邀请新用户注册赠送积分活动 798378
科研通“疑难数据库(出版商)”最低求助积分说明 758339