What Information Do Shoppers Share? The Effect of Personnel-, Retailer-, and Country-Trust on Willingness to Share Information

业务 背景(考古学) 宏观层面 个人可识别信息 营销 产品(数学) 经济 古生物学 经济体制 几何学 计算机安全 数学 计算机科学 生物
作者
Monica Grosso,Sandro Castaldo,Hua Li,Bart Larivière
出处
期刊:Journal of Retailing [Elsevier BV]
卷期号:96 (4): 524-547 被引量:30
标识
DOI:10.1016/j.jretai.2020.08.002
摘要

The relationship between consumers’ privacy concerns and their willingness to disclose personal information to retailers is more complex than a simple negative one. The multi-faced context, within which privacy decisions take place, shapes and bounds this relationship. Drawing on privacy contextual integrity theory, we model the privacy decisions as influenced by individuals’ multilevel trusting surroundings, which include trust in a retailer and in its personnel at the micro-level, and trust in a country at the macro-level. Based on 22,050 survey data across seven product categories in fourteen countries, our Bayesian multilevel modeling reveals that micro- and macro-level trust may promote consumers’ disclosure intentions via three mechanisms: (1) micro-level trust positive effect on consumers’ willingness to disclose their data; (2) micro-level trust effect by attenuating privacy concerns’ negative influence on this willingness; and (3) the positive indirect effect of trust in the country on both the direct and indirect impacts of trust in a retailer and in its personnel. Interestingly, trust’s direct effects are found in all the investigated types of information (i.e., identification, medical, financial, locational, demographic, lifestyle, and media usage data), whereas the indirect effects are found to vary across information types. Our post-hoc cluster analysis shows that different retail contexts can be classified into three clusters and help retailers understand whether they should invest in developing both trust in their retail company and in their personnel, or mainly on one of the two. By taking different types of trust and context effects into consideration, our findings help different retailers encourage customers to disclose their data with them.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无敌小宽哥完成签到,获得积分10
1秒前
羽客发布了新的文献求助10
1秒前
1秒前
herococa应助wuzihao采纳,获得30
2秒前
麦麦发布了新的文献求助10
2秒前
3秒前
我不是霍建华完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
菲菲完成签到,获得积分20
6秒前
fanzi发布了新的文献求助10
6秒前
oldchen发布了新的文献求助10
7秒前
7秒前
木鸽子完成签到,获得积分10
8秒前
菲菲发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
10秒前
赘婿应助bsn采纳,获得10
11秒前
上官若男应助feedyoursoul采纳,获得10
12秒前
zly发布了新的文献求助10
12秒前
12秒前
13秒前
kkkkkkkkkkk完成签到,获得积分10
14秒前
哈哈哈哈完成签到 ,获得积分10
15秒前
SciGPT应助温柔的耳机采纳,获得10
15秒前
zihan完成签到,获得积分10
15秒前
优秀岩完成签到,获得积分10
17秒前
轻松雨旋完成签到 ,获得积分10
19秒前
23秒前
Chief完成签到,获得积分0
24秒前
27秒前
能干的鞅发布了新的文献求助10
28秒前
wgm完成签到,获得积分10
28秒前
30秒前
英姑应助化学天空采纳,获得10
30秒前
31秒前
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3933582
求助须知:如何正确求助?哪些是违规求助? 3478705
关于积分的说明 11002632
捐赠科研通 3208766
什么是DOI,文献DOI怎么找? 1773247
邀请新用户注册赠送积分活动 860244
科研通“疑难数据库(出版商)”最低求助积分说明 797626