Research Progress on Thermal Conductivity of Graphdiyne Nanoribbons and its Defects: A Review

材料科学 空位缺陷 带隙 之字形的 热导率 纳米技术 电导率 石墨烯 光电子学 复合材料 结晶学 化学 物理化学 几何学 数学
作者
Wenchao Tian,Chunmin Cheng,Chuqiao Wang,Wenhua Li
出处
期刊:Recent Patents on Nanotechnology [Bentham Science Publishers]
卷期号:14 (4): 294-306 被引量:2
标识
DOI:10.2174/1872210514666200611094435
摘要

Background: Graphdiyne has a unique pi-conjugated structure, perfect pore distribution and adjustable electronic properties of sp2, sp hybrid planar framework. Due to the presence of acetylenic bonds, it has more excellent properties compared to grapheme, such as a unique structure-dependent Dirac cone, abundant carbon bonds and a large bandgap. As one of the important raw materials for nanodevices, it is extremely important to study the thermal properties of graphdiyne nanoribbon. Objective: This paper mainly introduces and discusses recent academic research and patents on the preparation methods and thermal conductivity of graphdiyne nanoribbons. Besides, the applications in engineering and vacancy defects in the preparation process of graphdiyne are described. Methods: Firstly, taking thermal conductivity as an index, the thermal conductivity of graphdiyne with various vacancy defects is discussed from the aspects of length, defect location and defect type. In addition, the graphdiyne nanoribbons were laterally compared with the thermal conductivity of the graphene nanoribbons. Results: The thermal conductivity of graphdiyne with defects increases with the length and width, which is lower than the intrinsic graphdiyne. The thermal conductivity of the acetylene chain lacking one carbon atom is higher than the one lacking the benzene ring. Typically, the thermal conductivity is larger in armchair than that of zigzag in the same size. Moreover Conclusion: Due to the unique structure and electronic characteristics, graphdiyne has provoked an extensive research interest in the field of nanoscience. Graphdiyne is considered as one of the most promising materials of next-generation electronic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YSY发布了新的文献求助10
刚刚
刚刚
gege发布了新的文献求助10
1秒前
1秒前
NexusExplorer应助超级的鹅采纳,获得10
1秒前
杨秋月完成签到,获得积分10
2秒前
高兴的问儿完成签到 ,获得积分10
2秒前
简简发布了新的文献求助10
3秒前
4秒前
Demi_Ming发布了新的文献求助10
5秒前
不敢装睡发布了新的文献求助50
6秒前
沙小光发布了新的文献求助10
7秒前
科研通AI5应助聂立双采纳,获得10
7秒前
合适的寄灵完成签到 ,获得积分10
9秒前
flj7038发布了新的文献求助10
9秒前
Demi_Ming完成签到,获得积分10
10秒前
Akim应助庾稀采纳,获得10
12秒前
留胡子的霖应助胡萝卜采纳,获得10
14秒前
14秒前
wxy完成签到 ,获得积分10
15秒前
研友_Z60ObL发布了新的文献求助10
15秒前
喜悦的绮露完成签到,获得积分10
15秒前
五月初夏完成签到,获得积分10
16秒前
聂立双发布了新的文献求助10
19秒前
小黑完成签到,获得积分10
19秒前
李健应助聪慧芷巧采纳,获得10
19秒前
随遇而安应助科研通管家采纳,获得10
20秒前
沙小光完成签到,获得积分20
20秒前
CyrusSo524应助科研通管家采纳,获得10
20秒前
20秒前
酷波er应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
上官若男应助科研通管家采纳,获得10
20秒前
20秒前
科研通AI5应助沙小光采纳,获得10
24秒前
荔枝完成签到 ,获得积分10
25秒前
传奇3应助YSY采纳,获得10
26秒前
26秒前
感性的寄真完成签到 ,获得积分10
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780984
求助须知:如何正确求助?哪些是违规求助? 3326419
关于积分的说明 10227236
捐赠科研通 3041655
什么是DOI,文献DOI怎么找? 1669535
邀请新用户注册赠送积分活动 799095
科研通“疑难数据库(出版商)”最低求助积分说明 758734