亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Combinatorial K-Means Clustering as a Machine Learning Tool Applied to Diabetes Mellitus Type 2

聚类分析 层次聚类 医学 糖尿病 共识聚类 计算机科学 差异(会计) 数据集 人工智能 数据挖掘 模式识别(心理学) 数学 机器学习 模糊聚类 CURE数据聚类算法 会计 业务 内分泌学
作者
Miroslava Nedyalkova,Sergio Madurga,Vasil Simeonov
出处
期刊:International Journal of Environmental Research and Public Health [Multidisciplinary Digital Publishing Institute]
卷期号:18 (4): 1919-1919 被引量:28
标识
DOI:10.3390/ijerph18041919
摘要

A new original procedure based on k-means clustering is designed to find the most appropriate clinical variables able to efficiently separate into groups similar patients diagnosed with diabetes mellitus type 2 (DMT2) and underlying diseases (arterial hypertonia (AH), ischemic heart disease (CHD), diabetic polyneuropathy (DPNP), and diabetic microangiopathy (DMA)). Clustering is a machine learning tool for discovering structures in datasets. Clustering has been proven to be efficient for pattern recognition based on clinical records. The considered combinatorial k-means procedure explores all possible k-means clustering with a determined number of descriptors and groups. The predetermined conditions for the partitioning were as follows: every single group of patients included patients with DMT2 and one of the underlying diseases; each subgroup formed in such a way was subject to partitioning into three patterns (good health status, medium health status, and degenerated health status); optimal descriptors for each disease and groups. The selection of the best clustering is obtained through the parameter called global variance, defined as the sum of all variance values of all clinical variables of all the clusters. The best clinical parameters are found by minimizing this global variance. This methodology has to identify a set of variables that are assumed to separate each underlying disease efficiently in three different subgroups of patients. The hierarchical clustering obtained for these four underlying diseases could be used to build groups of patients with correlated clinical data. The proposed methodology gives surmised results from complex data based on a relationship with the health status of the group and draws a picture of the prediction rate of the ongoing health status.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18秒前
ZY发布了新的文献求助10
23秒前
冷静的棒棒糖完成签到 ,获得积分10
31秒前
研友_闾丘枫完成签到,获得积分10
1分钟前
孟严青完成签到,获得积分10
1分钟前
完美世界应助科研通管家采纳,获得10
2分钟前
Orange应助科研通管家采纳,获得10
2分钟前
今后应助lourahan采纳,获得10
2分钟前
3分钟前
sandwich发布了新的文献求助10
3分钟前
sandwich完成签到,获得积分10
3分钟前
3分钟前
小言发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
迷茫的一代完成签到,获得积分10
4分钟前
4分钟前
Wei发布了新的文献求助10
4分钟前
4分钟前
lourahan发布了新的文献求助10
4分钟前
zhanghuan完成签到 ,获得积分10
4分钟前
完美世界应助WATeam采纳,获得10
5分钟前
6分钟前
Jack80发布了新的文献求助10
7分钟前
77完成签到,获得积分10
8分钟前
77发布了新的文献求助20
8分钟前
Zakariaje完成签到,获得积分10
8分钟前
乐乐应助NYW采纳,获得10
8分钟前
SciGPT应助科研通管家采纳,获得10
10分钟前
10分钟前
WATeam发布了新的文献求助10
10分钟前
10分钟前
wanci应助石愚志采纳,获得10
10分钟前
11分钟前
11分钟前
11分钟前
sleet发布了新的文献求助10
11分钟前
Hello应助Agnes采纳,获得10
11分钟前
sleet完成签到,获得积分10
11分钟前
科研通AI2S应助科研通管家采纳,获得10
12分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815818
求助须知:如何正确求助?哪些是违规求助? 3359386
关于积分的说明 10402252
捐赠科研通 3077196
什么是DOI,文献DOI怎么找? 1690236
邀请新用户注册赠送积分活动 813659
科研通“疑难数据库(出版商)”最低求助积分说明 767728