The Effect of Silicon Grade and Electrode Architecture on the Performance of Advanced Anodes for Next Generation Lithium-Ion Cells

材料科学 阳极 电极 石墨 锂(药物) 复合材料 电解质 纳米技术 光电子学 化学 医学 内分泌学 物理化学
作者
Alexandra Meyer,Fabian Ball,Wilhelm Pfleging
出处
期刊:Nanomaterials [Multidisciplinary Digital Publishing Institute]
卷期号:11 (12): 3448-3448 被引量:17
标识
DOI:10.3390/nano11123448
摘要

To increase the specific capacity of anodes for lithium-ion cells, advanced active materials, such as silicon, can be utilized. Silicon has an order of magnitude higher specific capacity compared to the state-of-the-art anode material graphite; therefore, it is a promising candidate to achieve this target. In this study, different types of silicon nanopowders were introduced as active material for the manufacturing of composite silicon/graphite electrodes. The materials were selected from different suppliers providing different grades of purity and different grain sizes. The slurry preparation, including binder, additives, and active material, was established using a ball milling device and coating was performed via tape casting on a thin copper current collector foil. Composite electrodes with an areal capacity of approximately 1.70 mAh/cm² were deposited. Reference electrodes without silicon were prepared in the same manner, and they showed slightly lower areal capacities. High repetition rate, ultrafast laser ablation was applied to these high-power electrodes in order to introduce line structures with a periodicity of 200 µm. The electrochemical performance of the anodes was evaluated as rate capability and operational lifetime measurements including pouch cells with NMC 622 as counter electrodes. For the silicon/graphite composite electrodes with the best performance, up to 200 full cycles at a C-rate of 1C were achieved until end of life was reached at 80% relative capacity. Additionally, electrochemical impedance spectroscopies were conducted as a function of state of health to correlate the used silicon grade with solid electrolyte interface (SEI) formation and charge transfer resistance values.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
南有乔木完成签到,获得积分10
刚刚
nove999完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
2秒前
2秒前
杨佳于发布了新的文献求助10
4秒前
积极的汽车完成签到,获得积分10
6秒前
8秒前
12秒前
小蘑菇完成签到 ,获得积分10
13秒前
nature完成签到,获得积分10
14秒前
冰魂应助清颜采纳,获得10
15秒前
阿呆发布了新的文献求助10
16秒前
fuguier完成签到,获得积分10
19秒前
今后应助正直的煎蛋采纳,获得10
19秒前
所所应助梓树采纳,获得10
24秒前
天才小能喵完成签到 ,获得积分0
25秒前
量子星尘发布了新的文献求助10
26秒前
万事屋完成签到 ,获得积分10
27秒前
Unicorn完成签到 ,获得积分10
29秒前
Lucas应助科研通管家采纳,获得10
30秒前
tramp应助科研通管家采纳,获得20
30秒前
科目三应助科研通管家采纳,获得10
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
甜美砖家完成签到 ,获得积分10
30秒前
期期应助科研通管家采纳,获得10
30秒前
情怀应助科研通管家采纳,获得10
30秒前
田様应助科研通管家采纳,获得10
30秒前
30秒前
慕青应助科研通管家采纳,获得10
30秒前
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
KYT2025给KYT2025的求助进行了留言
31秒前
wentong完成签到,获得积分10
31秒前
one完成签到 ,获得积分10
32秒前
32秒前
坐下喝茶完成签到 ,获得积分10
34秒前
35秒前
和谐智宸完成签到 ,获得积分10
39秒前
常绝山完成签到 ,获得积分10
40秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3881702
求助须知:如何正确求助?哪些是违规求助? 3424054
关于积分的说明 10737163
捐赠科研通 3148945
什么是DOI,文献DOI怎么找? 1737729
邀请新用户注册赠送积分活动 838970
科研通“疑难数据库(出版商)”最低求助积分说明 784179