Intelligent tool wear monitoring and multi-step prediction based on deep learning model

刀具磨损 规范化(社会学) 残余物 人工神经网络 稳健性(进化) 人工智能 卷积神经网络 计算机科学 状态监测 机械加工 机器学习 数据挖掘 工程类 算法 社会学 电气工程 基因 化学 机械工程 生物化学 人类学
作者
Minghui Cheng,Jiao Li,Pei Yan,Hongsen Jiang,Ruibin Wang,Tianyang Qiu,Xibin Wang
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:62: 286-300 被引量:161
标识
DOI:10.1016/j.jmsy.2021.12.002
摘要

In modern manufacturing industry, tool wear monitoring plays a significant role in ensuring product quality and machining efficiency. Numerous data-driven models based on deep learning have been developed to improve the accuracy of tool wear monitoring. However, tool wear monitoring under variable working conditions is rarely investigated. More importantly, for data-driven smart manufacturing, it is more meaningful and challenging to simultaneously achieve tool wear monitoring and multi-step prediction. To address the aforementioned issue, a novel framework based on feature normalization, attention mechanism, and deep learning algorithms was proposed for tool wear monitoring and multi-step prediction. Feature normalization was introduced to eliminate the dependence of local features on cutting conditions, and the attention mechanism was applied to enhance valuable information and weaken redundant information. Then a parallel convolutional neural network (parallel CNN) structure with different layers followed by Bi-directional long short term memory (BiLSTM) was developed for tool condition monitoring. Finally, based on the monitored tool wear values, a new tool condition prediction model based on the dense residual neural network (ResNetD) was proposed for short-term and long-term prediction of tool wear. Tool wear experiments under different combinations of cutting parameters were conducted to verify the proposed model, and the results showed that the proposed model has great advantages in efficiency and robustness compared with other data-driven models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BR发布了新的文献求助30
刚刚
柴子完成签到,获得积分10
2秒前
2秒前
嗡嗡嗡发布了新的文献求助10
3秒前
臻灏发布了新的文献求助10
4秒前
新小pi发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助30
6秒前
Dream完成签到,获得积分10
6秒前
ddssww完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
xiaose发布了新的文献求助10
7秒前
无花果应助一一采纳,获得10
7秒前
9秒前
科目三应助nn采纳,获得10
10秒前
10秒前
咕咕鸡发布了新的文献求助10
10秒前
10秒前
axi完成签到,获得积分10
11秒前
11秒前
Owen应助123采纳,获得10
11秒前
方方关注了科研通微信公众号
11秒前
3386582258应助进击的小白菜采纳,获得10
11秒前
科研通AI6.1应助charint采纳,获得10
12秒前
爆米花应助活泼的盼易采纳,获得10
13秒前
14秒前
多看文献完成签到,获得积分10
14秒前
14秒前
15秒前
雄i发布了新的文献求助10
15秒前
大模型应助alex采纳,获得10
16秒前
John完成签到,获得积分10
16秒前
17秒前
17秒前
852应助蔡蔡不菜菜采纳,获得10
17秒前
科研通AI6.1应助xz采纳,获得30
17秒前
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5753463
求助须知:如何正确求助?哪些是违规求助? 5481244
关于积分的说明 15378197
捐赠科研通 4892357
什么是DOI,文献DOI怎么找? 2631179
邀请新用户注册赠送积分活动 1579248
关于科研通互助平台的介绍 1535000