亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detecting Anomalies in Retinal Diseases Using Generative, Discriminative, and Self-supervised Deep Learning

判别式 人工智能 眼科 计算机科学 医学 生成语法 验光服务 视网膜 模式识别(心理学)
作者
Philippe Burlina,William Paul,T. Y. Alvin Liu,Neil M. Bressler
出处
期刊:JAMA Ophthalmology [American Medical Association]
卷期号:140 (2): 185-185 被引量:27
标识
DOI:10.1001/jamaophthalmol.2021.5557
摘要

Importance

Anomaly detectors could be pursued for retinal diagnoses based on artificial intelligence systems that may not have access to training examples for all retinal diseases in all phenotypic presentations. Possible applications could include screening of population for any retinal disease rather than a specific disease such as diabetic retinopathy, detection of novel retinal diseases or novel presentations of common retinal diseases, and detection of rare diseases with little or no data available for training.

Objective

To study the application of anomaly detection to retinal diseases.

Design, Setting, and Participants

High-resolution retinal images from the publicly available EyePACS data set with fundus images with a corresponding label ranging from 0 to 4 for representing different severities of diabetic retinopathy. Sixteen variants of anomaly detectors were designed. For evaluation, a surrogate problem was constructed, using diabetic retinopathy images, in which only retinas with nonreferable diabetic retinopathy, ie, no diabetic macular edema, and no diabetic retinopathy or mild to moderate nonproliferative diabetic retinopathy were used for training an artificial intelligence system, but both nonreferable and referable diabetic retinopathy (including diabetic macular edema or proliferative diabetic retinopathy) were used to test the system for detecting retinal disease.

Main Outcomes and Measures

Anomaly detectors were evaluated by commonly accepted performance metrics, including area under the receiver operating characteristic curve, F1 score, and accuracy.

Results

A total of 88 692 high-resolution retinal images of 44 346 individuals with varying severity of diabetic retinopathy were analyzed. The best performing across all anomaly detectors had an area under the receiver operating characteristic of 0.808 (95% CI, 0.789-0.827) and was obtained using an embedding method that involved a self-supervised network.

Conclusions and Relevance

This study suggests when abnormal (diseased) data, ie, referable diabetic retinopathy in this study, were not available for training of retinal diagnostic systems wherein only nonreferable diabetic retinopathy was used for training, anomaly detection techniques were useful in identifying images with and without referable diabetic retinopathy. This suggests that anomaly detectors may be used to detect retinal diseases in more generalized settings and potentially could play a role in screening of populations for retinal diseases or identifying novel diseases and phenotyping or detecting unusual presentations of common retinal diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
25秒前
53秒前
1分钟前
1分钟前
笨笨青筠完成签到 ,获得积分10
1分钟前
雪白小丸子完成签到,获得积分10
2分钟前
2分钟前
qqq完成签到,获得积分10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
2分钟前
123完成签到,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
轩辕山槐发布了新的文献求助10
4分钟前
5分钟前
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
6分钟前
矛头蝮应助cc采纳,获得10
7分钟前
7分钟前
7分钟前
皮皮虾发布了新的文献求助30
7分钟前
7分钟前
Orange应助刻苦秋尽采纳,获得10
7分钟前
yys完成签到,获得积分10
7分钟前
8分钟前
科研通AI2S应助皮皮虾采纳,获得30
8分钟前
光合作用完成签到,获得积分10
8分钟前
小二郎应助科研通管家采纳,获得10
8分钟前
8分钟前
amengptsd完成签到,获得积分10
8分钟前
8分钟前
8分钟前
8分钟前
8分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
The Geometry of the Moiré Effect in One, Two, and Three Dimensions 500
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4184518
求助须知:如何正确求助?哪些是违规求助? 3720207
关于积分的说明 11723702
捐赠科研通 3398899
什么是DOI,文献DOI怎么找? 1864944
邀请新用户注册赠送积分活动 922482
科研通“疑难数据库(出版商)”最低求助积分说明 834058