已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Novel Formulations and Logic-Based Benders Decomposition for the Integrated Parallel Machine Scheduling and Location Problem

作业车间调度 数学优化 本德分解 水准点(测量) 计算机科学 调度(生产过程) 整数规划 航程(航空) 集合(抽象数据类型) 算法 数学 布线(电子设计自动化) 工程类 计算机网络 航空航天工程 大地测量学 程序设计语言 地理
作者
Yantong Li,Jean‐François Côté,Leandro C. Coelho,Peng Wu
出处
期刊:Informs Journal on Computing 卷期号:34 (2): 1048-1069 被引量:33
标识
DOI:10.1287/ijoc.2021.1113
摘要

We investigate the discrete parallel machine scheduling and location problem, which consists of locating multiple machines to a set of candidate locations, assigning jobs from different locations to the located machines, and sequencing the assigned jobs. The objective is to minimize the maximum completion time of all jobs, that is, the makespan. Though the problem is of theoretical significance with a wide range of practical applications, it has not been well studied as reported in the literature. For this problem, we first propose three new mixed-integer linear programs that outperform state-of-the-art formulations. Then, we develop a new logic-based Benders decomposition algorithm for practical-sized instances, which splits the problem into a master problem that determines machine locations and job assignments to machines and a subproblem that sequences jobs on each machine. The master problem is solved by a branch-and-cut procedure that operates on a single search tree. Once an incumbent solution to the master problem is found, the subproblem is solved to generate cuts that are dynamically added to the master problem. A generic no-good cut is first proposed, which is later improved by some strengthening techniques. Two optimality cuts are also developed based on optimality conditions of the subproblem and improved by strengthening techniques. Numerical results on small-sized instances show that the proposed formulations outperform state-of-the-art ones. Computational results on 1,400 benchmark instances with up to 300 jobs, 50 machines, and 300 locations demonstrate the effectiveness and efficiency of the algorithm compared with current approaches. Summary of Contribution: This paper employs operations research methods and computing techniques to address an NP-hard combinatorial optimization problem: the parallel discrete machine scheduling and location problem. The problem is of practical significance but has not been well studied in the literature. For the problem, we formulate three novel mixed-integer linear programs that outperform state-of-the-art formulations and develop a new logic-based Benders decomposition algorithm. Extensive computational experiments on 1,400 benchmark instances with up to 300 jobs, 50 machines, and 300 locations are conducted to evaluate the performance of the proposed models and algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
打工不可能完成签到,获得积分10
4秒前
美罗培南完成签到,获得积分10
5秒前
海派Hi完成签到 ,获得积分10
5秒前
8秒前
猜猜我是谁完成签到,获得积分10
13秒前
CodeCraft应助Yyyyyyyyy采纳,获得10
13秒前
可爱的函函应助阿是采纳,获得10
16秒前
加贝完成签到 ,获得积分10
16秒前
lyw完成签到 ,获得积分10
17秒前
NexusExplorer应助科研打工人采纳,获得10
17秒前
19秒前
Ava应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
nn完成签到,获得积分10
26秒前
LR发布了新的文献求助10
28秒前
自觉语琴完成签到 ,获得积分10
28秒前
bkagyin应助aike采纳,获得10
30秒前
31秒前
顾矜应助禾斗石开采纳,获得10
31秒前
小蘑菇应助陈陈采纳,获得10
33秒前
36秒前
hmy发布了新的文献求助10
40秒前
yangyajie发布了新的文献求助10
42秒前
林晖清完成签到,获得积分10
45秒前
45秒前
云人类完成签到,获得积分20
48秒前
jiangchuansm完成签到,获得积分10
50秒前
陈陈发布了新的文献求助10
50秒前
芜衡落砂完成签到,获得积分10
52秒前
52秒前
东方发布了新的文献求助10
54秒前
有风的地方完成签到 ,获得积分10
57秒前
陈陈完成签到,获得积分10
59秒前
MinQi应助LR采纳,获得10
59秒前
阿元发布了新的文献求助10
59秒前
晁子枫完成签到 ,获得积分10
1分钟前
Wei完成签到 ,获得积分10
1分钟前
SciGPT应助Silence采纳,获得10
1分钟前
Grey完成签到 ,获得积分10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815679
求助须知:如何正确求助?哪些是违规求助? 3359287
关于积分的说明 10401909
捐赠科研通 3077048
什么是DOI,文献DOI怎么找? 1690059
邀请新用户注册赠送积分活动 813650
科研通“疑难数据库(出版商)”最低求助积分说明 767694