准周期函数
缩放比例
哈密顿量(控制论)
指数
指数函数
特征向量
李雅普诺夫指数
数学物理
数学
物理
安德森杂质模型
数学分析
量子力学
几何学
语言学
数学优化
哲学
电子
非线性系统
作者
Bozhen Zhou,Xueliang Wang,Shu Chen
出处
期刊:Physical review
[American Physical Society]
日期:2022-08-09
卷期号:106 (6)
被引量:12
标识
DOI:10.1103/physrevb.106.064203
摘要
We carry out a systematical study of the size scaling of the Liouvillian gap in boundary-dissipated one-dimensional quasiperiodic and disorder systems. By treating the boundary-dissipation operators as a perturbation, we derive an analytical expression of the Liouvillian gap, which indicates clearly the Liouvillian gap being proportional to the minimum of boundary densities of eigenstates of the underlying Hamiltonian, and thus give a theoretical explanation why the Liouvillian gap has different size scaling relation in the extended and localized phase. While the Liouvillian gap displays a power-law size scaling ${\mathrm{\ensuremath{\Delta}}}_{g}\ensuremath{\propto}{L}^{\ensuremath{-}3}$ in the extended phase, our analytical result unveils that the Liouvillian gap fulfills an exponential scaling relation ${\mathrm{\ensuremath{\Delta}}}_{g}\ensuremath{\propto}{e}^{\ensuremath{-}\ensuremath{\kappa}L}$ in the localized phase, where $\ensuremath{\kappa}$ takes the largest Lyapunov exponent of localized eigenstates of the underlying Hamiltonian. By scrutinizing the extended Aubry-Andr\'e-Harper model, we numerically confirm that the Liouvillian gap fulfills the exponential scaling relation and the fitting exponent $\ensuremath{\kappa}$ coincides pretty well with the analytical result of the Lyapunov exponent. The exponential scaling relation is further verified numerically in other one-dimensional quasiperiodic and random disorder models. We also study the relaxation dynamics and show the inverse of the Liouvillian gap giving a reasonable timescale of asymptotic convergence to the steady state.
科研通智能强力驱动
Strongly Powered by AbleSci AI