Dual-domain attention-guided convolutional neural network for low-dose cone-beam computed tomography reconstruction

计算机科学 卷积神经网络 人工智能 对偶(语法数字) 锥束ct 梁(结构) 领域(数学分析) Cone(正式语言) 光学 算法 计算机断层摄影术 物理 医学 放射科 艺术 数学 文学类 数学分析
作者
Lianying Chao,Peng Zhang,Yanli Wang,Zhiwei Wang,Wenting Xu,Qiang Li
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:251: 109295-109295 被引量:15
标识
DOI:10.1016/j.knosys.2022.109295
摘要

Excessive ionizing radiation in cone-beam computed tomography (CBCT) causes damage to patients, whereas a low radiation dose degrades the imaging quality. To improve the quality of low-dose CBCT images, deep-learning-based methods are developed and have obtained good performance. However, most previous studies only process the reconstructed CT images, and cannot recover the structures already lost in the reconstruction process. In this paper, a dual-domain attention-guided network framework (Dual-AGNet) is developed to process images in both projection and reconstruction domains. Spatial attention modules are included in the AGNet to effectively and adaptively compensate the intra- and inter-images information in both domains. Moreover, a joint loss function is developed to circumvent the structures loss and over-smoothness in CT images. Our method is evaluated and compared with the state-of-the-art methods on a simulated and a real low-dose CBCT datasets of walnuts. Our Dual-AGNet obtains significantly better performance than the state-of-the-art methods; on the simulated and real datasets, it decreases the root mean square error by approximately 11% and 19%, increases the peak signal-to-noise ratio by approximately 5% and 7%, and increases the structural similarity by approximately 5% and 2%, respectively. In qualitative evaluation, our Dual-AGNet not only suppresses the noise, but also provides realistic CT images with many delicate structures. In addition, the developed Dual-AGNet can be integrated into the existing CBCT system to promote the development of low-dose CBCT imaging. Testing code is available at https://github.com/LianyingChao/Dual-AGNet . • A novel dual-domain deep learning framework for low-dose CT reconstruction. • A 3D spatial attention module for well utilizing the intra- and inter-images information. • A novel joint loss function for circumventing the structures loss and over-smoothness. • Consistently good performance was obtained on both simulated and real datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wyy发布了新的文献求助10
1秒前
烟花应助ly采纳,获得10
1秒前
随心流浪完成签到,获得积分10
1秒前
NexusExplorer应助uu采纳,获得10
1秒前
司徒不二发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
ZQP发布了新的文献求助10
2秒前
111ccc发布了新的文献求助10
3秒前
欢喜恶天发布了新的文献求助10
3秒前
loyal发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
随心流浪发布了新的文献求助10
6秒前
long完成签到 ,获得积分10
6秒前
积极的沛文应助JuJu采纳,获得10
7秒前
受伤雁易发布了新的文献求助50
7秒前
爱吃冻梨完成签到,获得积分10
7秒前
ding应助阳阳阳采纳,获得10
7秒前
7秒前
纯真尔竹完成签到,获得积分10
8秒前
8秒前
123完成签到,获得积分10
9秒前
9秒前
偶然的风41177完成签到,获得积分10
9秒前
木子玫完成签到,获得积分10
10秒前
haning发布了新的文献求助10
10秒前
10秒前
wyy完成签到,获得积分10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
yjj发布了新的文献求助10
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
小虫学长应助科研通管家采纳,获得10
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794261
求助须知:如何正确求助?哪些是违规求助? 3339153
关于积分的说明 10294350
捐赠科研通 3055765
什么是DOI,文献DOI怎么找? 1676792
邀请新用户注册赠送积分活动 804745
科研通“疑难数据库(出版商)”最低求助积分说明 762098