Cell graph neural networks enable the precise prediction of patient survival in gastric cancer

数字化病理学 癌症 计算机科学 医学 人工智能 接收机工作特性 人工神经网络 肿瘤科 机器学习 内科学
作者
Yanan Wang,Yu Guang Wang,Changyuan Hu,Ming Li,Yanan Fan,Nina Otter,Ikuan Sam,Hongquan Gou,Yiqun Hu,Terry Kwok,John Zalcberg,Alex Boussioutas,Roger J. Daly,Guido Montúfar,Píetro Lió,Dakang Xu,Geoffrey I. Webb,Jiangning Song
出处
期刊:npj precision oncology [Nature Portfolio]
卷期号:6 (1) 被引量:45
标识
DOI:10.1038/s41698-022-00285-5
摘要

Gastric cancer is one of the deadliest cancers worldwide. An accurate prognosis is essential for effective clinical assessment and treatment. Spatial patterns in the tumor microenvironment (TME) are conceptually indicative of the staging and progression of gastric cancer patients. Using spatial patterns of the TME by integrating and transforming the multiplexed immunohistochemistry (mIHC) images as Cell-Graphs, we propose a graph neural network-based approach, termed Cell-Graph Signature or CGSignature, powered by artificial intelligence, for the digital staging of TME and precise prediction of patient survival in gastric cancer. In this study, patient survival prediction is formulated as either a binary (short-term and long-term) or ternary (short-term, medium-term, and long-term) classification task. Extensive benchmarking experiments demonstrate that the CGSignature achieves outstanding model performance, with Area Under the Receiver Operating Characteristic curve of 0.960 ± 0.01, and 0.771 ± 0.024 to 0.904 ± 0.012 for the binary- and ternary-classification, respectively. Moreover, Kaplan-Meier survival analysis indicates that the "digital grade" cancer staging produced by CGSignature provides a remarkable capability in discriminating both binary and ternary classes with statistical significance (P value < 0.0001), significantly outperforming the AJCC 8th edition Tumor Node Metastasis staging system. Using Cell-Graphs extracted from mIHC images, CGSignature improves the assessment of the link between the TME spatial patterns and patient prognosis. Our study suggests the feasibility and benefits of such an artificial intelligence-powered digital staging system in diagnostic pathology and precision oncology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
云落完成签到 ,获得积分10
1秒前
2秒前
3秒前
shentx应助虫虫采纳,获得80
4秒前
DONG发布了新的文献求助10
4秒前
5秒前
6秒前
三分应助哇samm采纳,获得10
7秒前
7秒前
Liolsy发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
wanci应助xicifish采纳,获得10
10秒前
苏世发布了新的文献求助10
10秒前
NexusExplorer应助starwan采纳,获得10
11秒前
深情安青应助哈宝采纳,获得10
13秒前
科研通AI5应助小高采纳,获得30
13秒前
香妃发布了新的文献求助10
15秒前
TT发布了新的文献求助10
15秒前
zhangpp发布了新的文献求助10
15秒前
饭小桶完成签到,获得积分10
18秒前
circle发布了新的文献求助10
18秒前
谢同学完成签到 ,获得积分10
18秒前
19秒前
xyg发布了新的文献求助100
20秒前
zhangpp完成签到,获得积分10
22秒前
白告发布了新的文献求助10
22秒前
23秒前
善良冬瓜完成签到,获得积分10
23秒前
24秒前
香妃完成签到,获得积分10
25秒前
TT完成签到,获得积分10
26秒前
七七完成签到,获得积分10
28秒前
28秒前
yuzhongLuo完成签到,获得积分20
28秒前
violet完成签到 ,获得积分10
29秒前
JimmyY发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4525769
求助须知:如何正确求助?哪些是违规求助? 3965850
关于积分的说明 12291281
捐赠科研通 3630286
什么是DOI,文献DOI怎么找? 1997883
邀请新用户注册赠送积分活动 1034187
科研通“疑难数据库(出版商)”最低求助积分说明 923802