Pitting corrosion prediction based on electromechanical impedance and convolutional neural networks

腐蚀 点蚀 材料科学 卷积神经网络 腐蚀监测 冶金 计算机科学 人工智能
作者
Wei Luo,Tiejun Liu,Weijie Li,Mingzhang Luo
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:22 (3): 1647-1664 被引量:21
标识
DOI:10.1177/14759217221109944
摘要

Corrosion induced thickness loss in metallic structures is a common and crucial problem in multiple industries. Therefore, it is important to accurately monitor the corrosion amount of the structure. Traditional corrosion monitoring methods are mainly based on electrochemical methods, and most of them are unable to quantify the corrosion amount. In our previous work, a new type of corrosion sensing mechanism based on the electromechanical impedance instrumented circular piezoelectric-metal transducer was proposed, in which the peak frequencies in the conductance signatures decrease linearly with the increase of the corrosion induced thickness loss. However, only the uniform corrosion with even metal thickness decrease was considered in the previous study. In this paper, the capability of the proposed sensing mechanism for the quantification and prediction of pitting corrosion was investigated using one-dimensional convolutional neural networks (1D CNN). Finite element modeling of the pitting corrosion was performed and the probability distribution of the corrosion pits was considered. In the experimental setup, corrosion pits were generated on the corrosion sensor using mechanical drilling. The 1D CNN was adopted to explore the regression relationship between the EMI signatures of the sensor and the mass loss induced by pitting corrosion. The results show that the proposed method has achieved high accuracy in the quantitative prediction of pitting corrosion. This paper lays the technical foundation for real-time and quantitative monitoring of pitting corrosion for metallic structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1391451653完成签到,获得积分10
刚刚
2秒前
2秒前
英姑应助小任性采纳,获得10
4秒前
5秒前
彩色的松思关注了科研通微信公众号
5秒前
MRM完成签到 ,获得积分10
5秒前
Doraemon发布了新的文献求助10
7秒前
123123发布了新的文献求助10
8秒前
科目三应助吱吱采纳,获得10
8秒前
gr完成签到,获得积分10
8秒前
10秒前
bleu发布了新的文献求助10
10秒前
丸子完成签到,获得积分10
12秒前
12秒前
科研通AI5应助程风破浪采纳,获得10
12秒前
zdywww完成签到,获得积分20
13秒前
上官若男应助争气采纳,获得10
15秒前
dudu发布了新的文献求助30
17秒前
葵景发布了新的文献求助10
18秒前
jenningseastera应助123123采纳,获得30
19秒前
风趣尔蓝完成签到,获得积分10
19秒前
20秒前
SciGPT应助迅速的八宝粥采纳,获得10
23秒前
研友_VZG7GZ应助aka毕业顺利采纳,获得10
23秒前
zdywww发布了新的文献求助10
23秒前
23秒前
热心玉兰完成签到,获得积分10
24秒前
32秒前
36秒前
迷你的夏菡完成签到 ,获得积分10
39秒前
jingjun_Li完成签到,获得积分10
44秒前
44秒前
45秒前
渣渣驳回了SciGPT应助
46秒前
47秒前
47秒前
plasmid发布了新的文献求助30
50秒前
700w完成签到 ,获得积分0
51秒前
可爱的函函应助jingjun_Li采纳,获得10
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780569
求助须知:如何正确求助?哪些是违规求助? 3326080
关于积分的说明 10225440
捐赠科研通 3041148
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799028
科研通“疑难数据库(出版商)”最低求助积分说明 758669