Energy consumption prediction for crude oil pipelines based on integrating mechanism analysis and data mining

管道(软件) 能源消耗 管道运输 人工神经网络 原油 能量(信号处理) 一致性(知识库) 工程类 消费(社会学) 预测建模 计算机科学 模拟 石油工程 人工智能 数据挖掘 机器学习 统计 环境工程 数学 机械工程 电气工程 社会科学 社会学
作者
Xinru Zhang,Lei Hou,Jiaquan Liu,Kai Yang,Chong Chai,Yanhao Li,Sichen He
出处
期刊:Energy [Elsevier BV]
卷期号:254: 124382-124382 被引量:17
标识
DOI:10.1016/j.energy.2022.124382
摘要

Accurate energy consumption prediction of crude oil pipeline is the basis for energy management and control optimization of oil transportation enterprises. The energy consumption of crude oil pipeline is affected by many factors, which is difficult to predict accurately by mechanism model. Machine learning model is not suitable for small samples and its results lack physical significance. In this paper, mechanism is integrated into machine learning model. A new physically guided neural network (PGNN) is proposed, which is established based on the physical modeling process of energy consumption prediction. The key physical intermediate variables affecting energy consumption are taken as artificial neurons and added to the loss function. The whale optimization algorithm is used to optimize the parameters of the model. A crude oil pipeline in Northeast China is taken as the prediction object to compare different models. The prediction accuracies of PGNN for electric energy consumption and fuel consumption are 2.54% and 4.36%, which are higher than other models. The prediction results of PGNN are more closely correlated with variables that directly affect energy consumption, which proves that PGNN has better physical consistency. In the case of small samples, PGNN has the least decline in accuracy. This study proves the feasibility of PGNN in energy consumption prediction of crude oil pipeline, and provides a new perspective for energy consumption prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
赘婿应助weiwei采纳,获得10
4秒前
Wy21完成签到 ,获得积分10
4秒前
无花果应助zmy采纳,获得10
5秒前
笨笨的荧荧完成签到 ,获得积分10
5秒前
6秒前
6秒前
wenwen完成签到,获得积分10
7秒前
上官若男应助苦无采纳,获得10
9秒前
否极泰来完成签到 ,获得积分10
9秒前
背后中心发布了新的文献求助10
9秒前
10秒前
贪玩的网络完成签到 ,获得积分20
12秒前
12秒前
从容的谷云发布了新的文献求助200
12秒前
健忘捕发布了新的文献求助10
13秒前
内向绿竹应助zhiwei采纳,获得30
13秒前
13秒前
14秒前
烟花应助探讨采纳,获得10
14秒前
小熊66618发布了新的文献求助10
16秒前
17秒前
背后中心完成签到,获得积分10
17秒前
17秒前
18秒前
登山人发布了新的文献求助10
19秒前
两是ssyycc发布了新的文献求助10
21秒前
afrex发布了新的文献求助30
23秒前
天天开心完成签到 ,获得积分10
23秒前
彭于晏应助轩子墨采纳,获得10
24秒前
gloval完成签到,获得积分10
25秒前
科研通AI5应助小旺仔采纳,获得10
26秒前
耗子侠完成签到,获得积分10
28秒前
倒立才能看文献完成签到,获得积分10
28秒前
29秒前
29秒前
你好这位仁兄完成签到,获得积分10
31秒前
Tiwiiw完成签到 ,获得积分10
32秒前
32秒前
35秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789499
求助须知:如何正确求助?哪些是违规求助? 3334519
关于积分的说明 10270310
捐赠科研通 3050937
什么是DOI,文献DOI怎么找? 1674263
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760742