Predicting the long-term cognitive trajectories using machine learning approaches: A Chinese nationwide longitudinal database

认知 心理学 纵向数据 期限(时间) 机器学习 数据库 人工智能 认知心理学 计算机科学 数据挖掘 量子力学 物理 神经科学
作者
Yafei Wu,Maoni Jia,Chaoyi Xiang,Shaowu Lin,Zhongquan Jiang,Ya Fang
出处
期刊:Psychiatry Research-neuroimaging [Elsevier BV]
卷期号:310: 114434-114434 被引量:17
标识
DOI:10.1016/j.psychres.2022.114434
摘要

This study aimed to explore the long-term cognitive trajectories and its’ determinants, and construct prediction models for identifying high-risk populations with unfavorable cognitive trajectories. This study included 3502 older adults aged 65–105 years at their first observations in a 16-year longitudinal cohort study. Cognitive function was measured by the Chinese version Mini Mental State Examination. The heterogeneity of cognitive function was identified through mixed growth model. Machine learning algorithms, namely regularized logistic regression (r-LR), support vector machine (SVM), random forest (RF), and super learner (SL) were used to predict cognitive trajectories. Discrimination and calibration metrics were used for performance evaluation. Two distinct trajectories were identified according to the changes of MMSE scores: intact cognitive functioning (93.6%), and dementia (6.4%). Older age, female gender, Han ethnicity, having no schooling, rural residents, low-frequency leisure activities, and low baseline BADL score were associated with a rapid decline in cognitive function. r-LR, SVM, and SL performed well in predicting cognitive trajectories (Sensitivity: 0.73, G-mean: 0.65). Age and psychological well-being were key predictors. Two cognitive trajectories were identified among older Chinese, and the identified key factors could be targeted for constructing early risk prediction models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
困困小嵩发布了新的文献求助10
2秒前
3秒前
Lilili完成签到,获得积分10
3秒前
3秒前
4秒前
PPD发布了新的文献求助10
5秒前
5秒前
务实凡灵发布了新的文献求助10
7秒前
Doctor_G发布了新的文献求助20
7秒前
7秒前
星辰大海应助春樹暮雲采纳,获得10
7秒前
8秒前
畅快代玉发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
爆米花应助cwp采纳,获得10
11秒前
上官若男应助鲤鱼晟睿采纳,获得10
11秒前
11秒前
彭彭完成签到,获得积分10
12秒前
石头完成签到,获得积分10
13秒前
14秒前
山巅一寺一壶酒完成签到,获得积分10
14秒前
14秒前
liuziyu发布了新的文献求助20
14秒前
salfige发布了新的文献求助35
14秒前
Prandtl发布了新的文献求助30
14秒前
冷静白亦给冷静白亦的求助进行了留言
15秒前
科研通AI5应助wsf2023采纳,获得10
15秒前
我是老大应助务实凡灵采纳,获得10
15秒前
orixero应助斯佳丽奥哈拉采纳,获得10
16秒前
共享精神应助野性的曼香采纳,获得10
16秒前
feng_qi001发布了新的文献求助10
17秒前
18秒前
SH123完成签到 ,获得积分10
18秒前
bkagyin应助未央采纳,获得10
18秒前
19秒前
暮光之城发布了新的文献求助10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Treatise on Geochemistry (Third edition) 1600
Understanding Xi Jinping's educational philosophy 500
The Bloomsbury companion to the philosophy of sport 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4713651
求助须知:如何正确求助?哪些是违规求助? 4076912
关于积分的说明 12608510
捐赠科研通 3779779
什么是DOI,文献DOI怎么找? 2087816
邀请新用户注册赠送积分活动 1114200
科研通“疑难数据库(出版商)”最低求助积分说明 991643