Automated Deep Learning Analysis for Quality Improvement of CT Pulmonary Angiography

医学 放射科 血管造影 肺动脉 肺动脉造影 计算机断层血管造影 图像质量
作者
Lewis D. Hahn,Kent Hall,Thamer Alebdi,Seth kligerman,Albert Hsiao
出处
期刊:Radiology [Radiological Society of North America]
标识
DOI:10.1148/ryai.210162
摘要

CT pulmonary angiography (CTPA) is the first-line imaging test for evaluation of acute pulmonary emboli. However, diagnostic quality is heterogeneous across institutions and is frequently limited by suboptimal pulmonary artery (PA) contrast enhancement. In this retrospective study, a deep learning algorithm for measuring enhancement of the central PAs was developed and assessed for feasibility of its use in quality improvement of CTPA. In a convenience sample of 450 patients, automated measurement of CTPA enhancement showed high agreement with manual radiologist measurement (r = 0.996). Using a threshold of less than 250 HU for suboptimal enhancement, the sensitivity and specificity of the automated classification were 100% and 99.5%, respectively. The algorithm was further evaluated in a random sampling of 3195 CTPA examinations from January 2019 through May 2021. Beginning in January 2021, the scanning protocol was transitioned from bolus tracking to a timing bolus strategy. Automated analysis of these examinations showed that most suboptimal examinations following the change in protocol were performed using one scanner, highlighting the potential value of deep learning algorithms for quality improvement in the radiology department. Keywords: CT Angiography, Pulmonary Arteries © RSNA, 2022.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wd发布了新的文献求助10
刚刚
Hello应助MYunn采纳,获得10
刚刚
yang发布了新的文献求助10
刚刚
刚刚
qqa完成签到,获得积分10
刚刚
Kyrie完成签到,获得积分10
1秒前
坦率的寻凝完成签到,获得积分10
1秒前
1秒前
漂亮采波发布了新的文献求助10
2秒前
陈陈陈晨发布了新的文献求助10
2秒前
2秒前
yanziwu94完成签到,获得积分10
3秒前
木今完成签到,获得积分10
4秒前
尉迟冰蓝发布了新的文献求助10
5秒前
5秒前
Jasper应助lll采纳,获得10
6秒前
黯淡星完成签到,获得积分10
6秒前
zzh完成签到,获得积分10
6秒前
科研通AI5应助信念采纳,获得10
6秒前
认真的映安完成签到,获得积分10
7秒前
7秒前
飘逸的青雪完成签到,获得积分10
7秒前
追梦完成签到,获得积分10
8秒前
8秒前
百里丹珍发布了新的文献求助10
8秒前
无花果应助哈哈采纳,获得10
8秒前
9秒前
花满楼完成签到,获得积分10
9秒前
石翎完成签到,获得积分10
9秒前
桐桐应助wd采纳,获得10
9秒前
dove_min070809完成签到,获得积分10
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
iNk应助科研通管家采纳,获得10
10秒前
iNk应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得30
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Knowledge management in the fashion industry 300
The world according to Garb 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816509
求助须知:如何正确求助?哪些是违规求助? 3359946
关于积分的说明 10406042
捐赠科研通 3078020
什么是DOI,文献DOI怎么找? 1690472
邀请新用户注册赠送积分活动 813786
科研通“疑难数据库(出版商)”最低求助积分说明 767857