A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects

计算机科学 聚类分析 CURE数据聚类算法 共识聚类 机器学习 人工智能 相关聚类 高维数据聚类 数据流聚类 树冠聚类算法 约束聚类 模糊聚类 数据挖掘 数据科学 概念聚类
作者
Absalom E. Ezugwu,Abiodun M. Ikotun,Olaide O. Oyelade,Laith Abualigah,Jeffrey O. Agushaka,Christopher Ifeanyi Eke,Andronicus A. Akinyelu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:110: 104743-104743 被引量:513
标识
DOI:10.1016/j.engappai.2022.104743
摘要

Clustering is an essential tool in data mining research and applications. It is the subject of active research in many fields of study, such as computer science, data science, statistics, pattern recognition, artificial intelligence, and machine learning. Several clustering techniques have been proposed and implemented, and most of them successfully find excellent quality or optimal clustering results in the domains mentioned earlier. However, there has been a gradual shift in the choice of clustering methods among domain experts and practitioners alike, which is precipitated by the fact that most traditional clustering algorithms still depend on the number of clusters provided a priori. These conventional clustering algorithms cannot effectively handle real-world data clustering analysis problems where the number of clusters in data objects cannot be easily identified. Also, they cannot effectively manage problems where the optimal number of clusters for a high-dimensional dataset cannot be easily determined. Therefore, there is a need for improved, flexible, and efficient clustering techniques. Recently, a variety of efficient clustering algorithms have been proposed in the literature, and these algorithms produced good results when evaluated on real-world clustering problems. This study presents an up-to-date systematic and comprehensive review of traditional and state-of-the-art clustering techniques for different domains. This survey considers clustering from a more practical perspective. It shows the outstanding role of clustering in various disciplines, such as education, marketing, medicine, biology, and bioinformatics. It also discusses the application of clustering to different fields attracting intensive efforts among the scientific community, such as big data, artificial intelligence, and robotics. This survey paper will be beneficial for both practitioners and researchers. It will serve as a good reference point for researchers and practitioners to design improved and efficient state-of-the-art clustering algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助科研通管家采纳,获得10
刚刚
OCDer应助科研通管家采纳,获得200
刚刚
万万发布了新的文献求助10
刚刚
科研通AI2S应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
852应助科研通管家采纳,获得10
1秒前
ccm发布了新的文献求助10
1秒前
1秒前
CipherSage应助Alexandra采纳,获得10
2秒前
4秒前
可爱的函函应助龙腾岁月采纳,获得10
5秒前
chendz发布了新的文献求助10
5秒前
bkagyin应助自豪的樱桃采纳,获得10
6秒前
张先伟完成签到,获得积分10
7秒前
可靠的难胜完成签到,获得积分10
8秒前
wen完成签到,获得积分10
8秒前
科研通AI5应助悲凉的幻莲采纳,获得50
10秒前
whisper发布了新的文献求助10
11秒前
elmacho完成签到 ,获得积分10
11秒前
timemaster666完成签到,获得积分10
12秒前
14秒前
15秒前
YSY完成签到 ,获得积分10
15秒前
iijjj应助Hollen采纳,获得10
15秒前
飞鱼完成签到 ,获得积分10
16秒前
lll完成签到,获得积分10
16秒前
沈玉琳发布了新的文献求助10
17秒前
littleyi完成签到 ,获得积分10
18秒前
19秒前
马嘎嘎发布了新的文献求助50
19秒前
JXDYYZK完成签到,获得积分10
21秒前
Jasper应助lll采纳,获得10
21秒前
感性的初雪完成签到,获得积分10
22秒前
橡树完成签到,获得积分10
22秒前
24秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845754
求助须知:如何正确求助?哪些是违规求助? 3388139
关于积分的说明 10551814
捐赠科研通 3108775
什么是DOI,文献DOI怎么找? 1713076
邀请新用户注册赠送积分活动 824576
科研通“疑难数据库(出版商)”最低求助积分说明 774908