Assessment of glomerular morphological patterns by deep learning algorithms

卷积神经网络 人工智能 医学 深度学习 模式识别(心理学) 病理 肾小球 肾小球 计算机科学 机器学习 算法 肾小球肾炎 内科学
作者
Cleo‐Aron Weis,Jan Niklas Bindzus,Jonas Voigt,Marlen Runz,Svetlana Hertjens,Matthias M. Gaida,Zoran V. Popović,Štefan Porubský
出处
期刊:Journal of Nephrology [Springer Science+Business Media]
卷期号:35 (2): 417-427 被引量:31
标识
DOI:10.1007/s40620-021-01221-9
摘要

Abstract Background Compilation of different morphological lesion signatures is characteristic of renal pathology. Previous studies have documented the potential value of artificial intelligence (AI) in recognizing relatively clear-cut glomerular structures and patterns, such as segmental or global sclerosis or mesangial hypercellularity. This study aimed to test the capacity of deep learning algorithms to recognize complex glomerular structural changes that reflect common diagnostic dilemmas in nephropathology. Methods For this purpose, we defined nine classes of glomerular morphological patterns and trained twelve convolutional neuronal network (CNN) models on these. The two-step training process was done on a first dataset defined by an expert nephropathologist (12,253 images) and a second consensus dataset (11,142 images) defined by three experts in the field. Results The efficacy of CNN training was evaluated using another set with 180 consensus images, showing convincingly good classification results (kappa-values 0.838–0.938). Furthermore, we elucidated the image areas decisive for CNN-based decision making by class activation maps. Finally, we demonstrated that the algorithm could decipher glomerular disease patterns coinciding in a single glomerulus (e.g. necrosis along with mesangial and endocapillary hypercellularity). Conclusions In summary, our model, focusing on glomerular lesions detectable by conventional microscopy, is the first sui generis to deploy deep learning as a reliable and promising tool in recognition of even discrete and/or overlapping morphological changes. Our results provide a stimulus for ongoing projects that integrate further input levels next to morphology (such as immunohistochemistry, electron microscopy, and clinical information) to develop a novel tool applicable for routine diagnostic nephropathology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Allure完成签到 ,获得积分10
1秒前
1秒前
kid发布了新的文献求助10
2秒前
CANGSHENG发布了新的文献求助10
2秒前
3秒前
3秒前
JamesPei应助当归采纳,获得10
4秒前
陶醉大侠发布了新的文献求助10
5秒前
青筠wing完成签到 ,获得积分10
5秒前
走着完成签到,获得积分10
6秒前
大个应助wendinfgmei采纳,获得10
7秒前
小羊发布了新的文献求助10
7秒前
Jackson_Cheng发布了新的文献求助30
7秒前
拟好啊完成签到,获得积分20
8秒前
虚拟的冰淇淋完成签到,获得积分10
9秒前
hhh完成签到,获得积分10
9秒前
上官若男应助自由的冬易采纳,获得10
10秒前
12秒前
12秒前
Jackson_Cheng完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
科研通AI5应助CANGSHENG采纳,获得10
13秒前
985博士完成签到,获得积分20
14秒前
AYQ发布了新的文献求助10
15秒前
16秒前
17秒前
小羊完成签到,获得积分10
17秒前
JamesPei应助Jackson_Cheng采纳,获得10
18秒前
18秒前
淡淡夕阳发布了新的文献求助10
18秒前
shizhf999发布了新的文献求助10
18秒前
爆米花应助奔波儿灞采纳,获得10
19秒前
Allure发布了新的文献求助10
19秒前
22秒前
陶醉大侠完成签到,获得积分10
22秒前
tender完成签到,获得积分10
22秒前
LiqinZhou关注了科研通微信公众号
23秒前
24秒前
vincentbioinfo完成签到,获得积分10
25秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867291
求助须知:如何正确求助?哪些是违规求助? 3409544
关于积分的说明 10664273
捐赠科研通 3133804
什么是DOI,文献DOI怎么找? 1728454
邀请新用户注册赠送积分活动 833001
科研通“疑难数据库(出版商)”最低求助积分说明 780517