Smart farming using Machine Learning and Deep Learning techniques

农业 生产力 生计 精准农业 业务 工作(物理) 综合农业 农业生产力 混合农业 农业工程 生产(经济) 计算机科学 农业科学
作者
Senthil Kumar Swami Durai,Mary Divya Shamili
出处
期刊:Decision Analytics Journal [Elsevier]
卷期号:: 100041-100041
标识
DOI:10.1016/j.dajour.2022.100041
摘要

The practice of cultivating the soil, producing crops, and keeping livestock is referred to as farming. Agriculture is critical to a country’s economic development. Nearly 58 percent of a country’s primary source of livelihood is farming. Farmers till date had adopted conventional farming techniques. These techniques were not precise thus reduced the productivity and consumed a lot of time. Precise farming helps to increase the productivity by precisely determining the steps that needs to be practiced at its due season. Predicting the weather conditions, analyzing the soil, recommending the crops for cultivation, determine the amount of fertilizers, pesticides that need to be used are some elements of precision farming. Precise Farming uses advanced technologies such as IOT, Data Mining, Data Analytics, Machine Learning to collect the data, train the systems and predict the results. With the help of technologies Precise farming helps to reduce manual labor and increase productivity. Farmers have been facing various challenges in these recent times, this includes crop failure due to less rainfall, infertility of soil and so on. Due to the changes taking place in the environment the proposed work helps to identify how to manage crops and harvest in a smart way. It guides an individual for smart farming. The aim of this work is to help an individual cultivate crops efficiently and hence achieve high productivity at low cost. It also helps to predict the total cost needed for cultivation. This would help an individual to pre-plan the activities before cultivation resulting in an integrated solution in farming. • Ensembling techniques with Hyperparameter tuning in machine Learning algorithms for predictive modeling. • GDD value Prediction and nutrient requirement estimation. • Pre-trained Deep Learning Model for image detection. • Herbicides and Pesticides recommendation. • Forecasting cost of cultivation for future years based on cost concepts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
昏睡的蟠桃应助lxlxllx89采纳,获得200
2秒前
4秒前
Soir发布了新的文献求助10
5秒前
5秒前
共享精神应助ch采纳,获得10
6秒前
yyh12138完成签到,获得积分20
6秒前
铁柱xh完成签到 ,获得积分10
8秒前
yyh12138发布了新的文献求助10
9秒前
神明发布了新的文献求助200
9秒前
ccc完成签到,获得积分10
10秒前
Psy发布了新的文献求助50
11秒前
xuan2022完成签到,获得积分10
12秒前
坚强白玉完成签到,获得积分10
15秒前
我不完成签到,获得积分10
17秒前
22秒前
pluto应助会飞的史迪奇采纳,获得20
24秒前
大模型应助神明采纳,获得10
24秒前
pluto应助王文静采纳,获得50
25秒前
阳光彩虹小白马完成签到 ,获得积分10
25秒前
basepair发布了新的文献求助10
27秒前
情怀应助Shining_Wu采纳,获得10
28秒前
28秒前
温茶月伴夜完成签到 ,获得积分10
29秒前
桃花不用开了完成签到 ,获得积分10
30秒前
欣喜尔安发布了新的文献求助10
33秒前
笨笨芯应助南方周末采纳,获得10
33秒前
33秒前
英俊的铭应助猪江黎学者采纳,获得10
34秒前
basepair完成签到,获得积分10
34秒前
35秒前
35秒前
Psy完成签到,获得积分10
38秒前
111发布了新的文献求助10
38秒前
39秒前
pluto应助laura采纳,获得100
41秒前
42秒前
42秒前
Bin_Liu发布了新的文献求助10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780200
求助须知:如何正确求助?哪些是违规求助? 3325511
关于积分的说明 10223282
捐赠科研通 3040677
什么是DOI,文献DOI怎么找? 1668962
邀请新用户注册赠送积分活动 798897
科研通“疑难数据库(出版商)”最低求助积分说明 758634