Identification of soybean varieties based on hyperspectral imaging technology and one‐dimensional convolutional neural network

高光谱成像 卷积神经网络 人工智能 模式识别(心理学) 计算机科学 鉴定(生物学) 支持向量机 集合(抽象数据类型) 人工神经网络 数学 机器学习 生物 植物 程序设计语言
作者
Hao Li,Liu Zhang,Heng Sun,Zhenhong Rao,Haiyan Ji
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:44 (8) 被引量:38
标识
DOI:10.1111/jfpe.13767
摘要

Abstract Variety identification of seeds is essential to ensure the purity and yield of the variety. A model based on hyperspectral imaging technology and one‐dimensional convolutional neural network (1D CNN) was proposed to distinguish soybean seed varieties in this article. A total of 3,600 soybean seeds (900 seeds per variety) of hyperspectral images in the spectral range of 866.4–1,701.0 nm were collected. Traditional machine learning models (k‐nearest neighbor, support vector machines, partial least squares discriminant analysis) and 1D CNN model were established based on different numbers of sample sets. The 1D CNN model was the most stable and had the highest classification accuracy, higher than 98%. Fivefold cross validation was used to evaluate the model, and the model achieved an accuracy of more than 95% in both the training set and the validation set. Finally, the t‐distributed stochastic neighbor embedding was used to visualize the feature values extracted by 1D CNN. The research results demonstrated that the 1D CNN model maintained good classification performance in soybean seed classification and had good application prospects in hyperspectral imaging technology. Practical Applications Variety identification of soybean seeds is essential to ensure the purity and yield of the variety. Different soybean varieties have different genetic purity, physical purity, germination ability and vigor, which are related to quality attributes, such as nutritional value, stress resistance, and final yield. In the past, most soybeans were identified using traditional machine learning algorithms combined with near‐infrared hyperspectral imaging technology to build models. This requires a series of operations, such as smoothing preprocessing and dimensionality reduction on hyperspectral data. These steps are too cumbersome and are not conducive to online hyperspectral monitoring systems. The results of this study show that it is feasible to use one‐dimensional convolutional neural network combined with hyperspectral technology to identify soybean seeds, and it also provides a new idea for building an online detection system in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十七驳回了沐沐应助
2秒前
2秒前
3秒前
从容的雨灵完成签到,获得积分10
3秒前
欢城完成签到,获得积分10
3秒前
舒适访彤完成签到,获得积分20
4秒前
6秒前
李健应助aaa采纳,获得10
6秒前
旺旺jz发布了新的文献求助10
7秒前
科目三应助冷酷莺采纳,获得10
7秒前
SRQ完成签到,获得积分20
7秒前
Au发布了新的文献求助10
7秒前
8秒前
boymin2015完成签到 ,获得积分10
8秒前
iNk应助小女子常戚戚采纳,获得10
8秒前
iNk应助小女子常戚戚采纳,获得10
8秒前
奋斗慕凝完成签到 ,获得积分10
9秒前
9秒前
kingmp2完成签到 ,获得积分10
9秒前
9秒前
小李完成签到,获得积分10
11秒前
鼠标划到头像完成签到,获得积分10
11秒前
Hello应助晒太阳的乌龟采纳,获得10
11秒前
Chikit完成签到,获得积分10
11秒前
MikyY发布了新的文献求助10
12秒前
13秒前
sandse7en完成签到 ,获得积分10
14秒前
搜集达人应助陈佳欣采纳,获得10
14秒前
善良乐松完成签到,获得积分10
15秒前
三山五岳发布了新的文献求助10
16秒前
幽默的月光完成签到,获得积分10
16秒前
dddd发布了新的文献求助10
18秒前
哈哈环完成签到 ,获得积分10
18秒前
mengkezhang完成签到,获得积分20
19秒前
李小鑫吖完成签到,获得积分10
20秒前
香蕉觅云应助不吃香菜采纳,获得10
20秒前
21秒前
bkagyin应助dddd采纳,获得10
21秒前
徐rl完成签到 ,获得积分10
22秒前
sunshine完成签到,获得积分10
24秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798603
求助须知:如何正确求助?哪些是违规求助? 3344274
关于积分的说明 10319445
捐赠科研通 3060850
什么是DOI,文献DOI怎么找? 1679798
邀请新用户注册赠送积分活动 806778
科研通“疑难数据库(出版商)”最低求助积分说明 763372