Examinee-Examiner Network: Weakly Supervised Accurate Coronary Lumen Segmentation Using Centerline Constraint

分割 人工智能 管腔(解剖学) 计算机科学 切割 计算机视觉 模式识别(心理学) 医学 图像分割 内科学
作者
Yaolei Qi,Han Xu,Yuting He,Guanyu Li,Zehang Li,Youyong Kong,Jean-Louis Coatrieux,Huazhong Shu,Guanyu Yang,Shengxian Tu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 9429-9441 被引量:18
标识
DOI:10.1109/tip.2021.3125490
摘要

Accurate coronary lumen segmentation on coronary-computed tomography angiography (CCTA) images is crucial for quantification of coronary stenosis and the subsequent computation of fractional flow reserve. Many factors including difficulty in labeling coronary lumens, various morphologies in stenotic lesions, thin structures and small volume ratio with respect to the imaging field complicate the task. In this work, we fused the continuity topological information of centerlines which are easily accessible, and proposed a novel weakly supervised model, Examinee-Examiner Network (EE-Net), to overcome the challenges in automatic coronary lumen segmentation. First, the EE-Net was proposed to address the fracture in segmentation caused by stenoses by combining the semantic features of lumens and the geometric constraints of continuous topology obtained from the centerlines. Then, a Centerline Gaussian Mask Module was proposed to deal with the insensitiveness of the network to the centerlines. Subsequently, a weakly supervised learning strategy, Examinee-Examiner Learning, was proposed to handle the weakly supervised situation with few lumen labels by using our EE-Net to guide and constrain the segmentation with customized prior conditions. Finally, a general network layer, Drop Output Layer, was proposed to adapt to the class imbalance by dropping well-segmented regions and weights the classes dynamically. Extensive experiments on two different data sets demonstrated that our EE-Net has good continuity and generalization ability on coronary lumen segmentation task compared with several widely used CNNs such as 3D-UNet. The results revealed our EE-Net with great potential for achieving accurate coronary lumen segmentation in patients with coronary artery disease. Code at http://github.com/qiyaolei/Examinee-Examiner-Network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
qwert完成签到,获得积分20
1秒前
dou发布了新的文献求助10
1秒前
任梁辰发布了新的文献求助100
1秒前
深情安青应助朱建强采纳,获得10
1秒前
1秒前
ldy完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
rosestar发布了新的文献求助10
3秒前
鲁啊鲁完成签到 ,获得积分10
3秒前
wyc完成签到,获得积分10
3秒前
不学无术发布了新的文献求助20
3秒前
星辰大海应助乒坛巨人采纳,获得10
3秒前
4秒前
4秒前
4秒前
快乐的菠萝完成签到,获得积分10
5秒前
5秒前
槐椟完成签到,获得积分10
5秒前
季刘杰发布了新的文献求助10
6秒前
6秒前
6秒前
任梁辰完成签到,获得积分10
6秒前
夏目发布了新的文献求助10
7秒前
吴子鹏完成签到,获得积分10
7秒前
思源应助疯狂的大闸蟹采纳,获得10
7秒前
狂野的河马完成签到,获得积分0
7秒前
gz发布了新的文献求助10
7秒前
qwert发布了新的文献求助10
8秒前
8秒前
现代飞鸟完成签到,获得积分10
8秒前
勤奋的松鼠完成签到,获得积分0
8秒前
瘦瘦安柏完成签到,获得积分10
9秒前
9秒前
10秒前
背后的鹭洋完成签到,获得积分0
10秒前
科研通AI2S应助岁月静好采纳,获得30
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5607247
求助须知:如何正确求助?哪些是违规求助? 4691896
关于积分的说明 14871944
捐赠科研通 4713487
什么是DOI,文献DOI怎么找? 2543412
邀请新用户注册赠送积分活动 1508632
关于科研通互助平台的介绍 1472618