Socialized Learning for Smart Cities: Cognitive Paradigm, Methodology, and Solution

计算机科学 人工智能 智慧城市 方案(数学) 服务(商务) 知识管理 智能化 计算机安全 物联网 心理学 数学分析 数学 经济 经济 心理治疗师
作者
Yunfeng Zhao,Zhicheng Liu,Chao Qiu,Xiuhua Li,Xiaofei Wang,Qinghua Hu
出处
期刊:IEEE Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:28 (5): 200-208 被引量:9
标识
DOI:10.1109/mwc.111.2100023
摘要

Along with the unprecedented boom of 5G, the Internet of Things (IoT), and artificial intelligence, smart cities are making a great clamor. When billions of IoT devices are streaming in the smart city, realizing low-latency and high-bandwidth services has a significant impact on the benefits of smart cities. Thus, managing resources efficiently and intelligently to meet various service requirements has become a challenge for smart cities. With the rapid development of machine intelligence, it can be considered that many machines constitute a machine society just like that of human beings. Inspired by the efficient and collaborative operation mechanism of human society, we propose a socialized learning scheme to address various needs in smart cities (e.g., reasonable resource allocation). Specifically, we present the socialized learning scheme from three perspectives. First, we design a cognitive paradigm of socialized learning to enlighten the long-term vision of applying learning-based resource management to smart cities, with comprehensive discussions of three dimensions consisting of architecture, decision, and knowledge. Second, we also probe the socialized learning methodology including socialized training and socialized inference. It highlights social relationships and introduces a series of technologies to realize social relations within and across layers. Finally, we give a socialized learning solution for solving the practical resource allocation problem in smart cities, thereby jointly improving decision accuracy and reducing training costs. Illustrative simulations are provided to show the effectiveness of the proposed scheme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
动听无声完成签到,获得积分10
1秒前
1秒前
lettuce完成签到,获得积分10
1秒前
couletian完成签到 ,获得积分10
1秒前
2秒前
2秒前
飞飞style完成签到,获得积分10
3秒前
小黑之家完成签到,获得积分10
3秒前
今后应助唠叨的又菡采纳,获得10
4秒前
yyfer完成签到,获得积分10
4秒前
awei完成签到,获得积分20
4秒前
5秒前
927完成签到 ,获得积分10
5秒前
Dxy-TOFA完成签到,获得积分10
6秒前
6秒前
开心黑米完成签到,获得积分10
6秒前
6秒前
ylh发布了新的文献求助10
6秒前
6秒前
有趣的银发布了新的文献求助10
7秒前
sci完成签到,获得积分10
7秒前
mouxq发布了新的文献求助10
7秒前
7秒前
科研通AI5应助畅快的翎采纳,获得10
7秒前
徐木木发布了新的文献求助20
7秒前
clytze发布了新的文献求助10
8秒前
火星上的沛春完成签到,获得积分10
8秒前
66完成签到,获得积分10
8秒前
8秒前
罗密欧与傅里叶完成签到,获得积分10
9秒前
852应助kiko采纳,获得10
9秒前
10秒前
psycho完成签到,获得积分10
10秒前
11秒前
hewd3发布了新的文献求助10
11秒前
11秒前
12秒前
ylh完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4969390
求助须知:如何正确求助?哪些是违规求助? 4226439
关于积分的说明 13162922
捐赠科研通 4013920
什么是DOI,文献DOI怎么找? 2196363
邀请新用户注册赠送积分活动 1209607
关于科研通互助平台的介绍 1123732