亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Scan-specific artifact reduction in k-space (SPARK) neural networks synergize with physics-based reconstruction to accelerate MRI.

计算机科学 工件(错误) 人工智能 信号(编程语言) 成像体模 压缩传感 脉搏(音乐)
作者
Yamin Arefeen,Onur Beker,Jaejin Cho,Heng Yu,Elfar Adalsteinsson,Berkin Bilgic
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:87 (2): 764-780
标识
DOI:10.1002/mrm.29036
摘要

Purpose To develop a scan-specific model that estimates and corrects k-space errors made when reconstructing accelerated MRI data. Methods Scan-specific artifact reduction in k-space (SPARK) trains a convolutional-neural-network to estimate and correct k-space errors made by an input reconstruction technique by back-propagating from the mean-squared-error loss between an auto-calibration signal (ACS) and the input technique's reconstructed ACS. First, SPARK is applied to generalized autocalibrating partially parallel acquisitions (GRAPPA) and demonstrates improved robustness over other scan-specific models, such as robust artificial-neural-networks for k-space interpolation (RAKI) and residual-RAKI. Subsequent experiments demonstrate that SPARK synergizes with residual-RAKI to improve reconstruction performance. SPARK also improves reconstruction quality when applied to advanced acquisition and reconstruction techniques like 2D virtual coil (VC-) GRAPPA, 2D LORAKS, 3D GRAPPA without an integrated ACS region, and 2D/3D wave-encoded imaging. Results SPARK yields SSIM improvement and 1.5 - 2× root mean squared error (RMSE) reduction when applied to GRAPPA and improves robustness to ACS size for various acceleration rates in comparison to other scan-specific techniques. When applied to advanced reconstruction techniques such as residual-RAKI, 2D VC-GRAPPA and LORAKS, SPARK achieves up to 20% RMSE improvement. SPARK with 3D GRAPPA also improves RMSE performance by ~2×, SSIM performance, and perceived image quality without a fully sampled ACS region. Finally, SPARK synergizes with non-Cartesian, 2D and 3D wave-encoding imaging by reducing RMSE between 20% and 25% and providing qualitative improvements. Conclusion SPARK synergizes with physics-based acquisition and reconstruction techniques to improve accelerated MRI by training scan-specific models to estimate and correct reconstruction errors in k-space.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Marciu33发布了新的文献求助10
刚刚
牛八先生完成签到,获得积分10
14秒前
zzwwill完成签到,获得积分10
38秒前
1分钟前
kiki发布了新的文献求助30
1分钟前
1分钟前
nannan完成签到 ,获得积分10
2分钟前
kiki完成签到,获得积分10
2分钟前
3分钟前
GPTea应助科研通管家采纳,获得20
3分钟前
彭于晏应助高兴的平露采纳,获得10
4分钟前
小新完成签到 ,获得积分10
5分钟前
HuAnG发布了新的文献求助20
5分钟前
量子星尘发布了新的文献求助10
5分钟前
丘比特应助byho采纳,获得10
5分钟前
Demi_Ming完成签到,获得积分10
5分钟前
wangfaqing942完成签到 ,获得积分10
5分钟前
GPTea应助科研通管家采纳,获得20
5分钟前
5分钟前
5分钟前
byho发布了新的文献求助10
5分钟前
6分钟前
juejue333完成签到,获得积分10
6分钟前
酷酷的大米完成签到,获得积分10
6分钟前
caulif完成签到 ,获得积分10
6分钟前
6分钟前
1111233发布了新的文献求助10
6分钟前
今今完成签到,获得积分10
6分钟前
7分钟前
领导范儿应助1111233采纳,获得10
7分钟前
yeahyeahyeah发布了新的文献求助10
7分钟前
HuAnG完成签到,获得积分10
7分钟前
打打应助柠栀采纳,获得10
7分钟前
zhang完成签到,获得积分10
7分钟前
8分钟前
柠栀发布了新的文献求助10
8分钟前
8分钟前
Nov发布了新的文献求助10
8分钟前
深情安青应助Marciu33采纳,获得10
8分钟前
obedVL完成签到,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Proposals That Work: A Guide for Planning Dissertations and Grant Proposals 888
A Brief Primer on the Concept of the Neuroweapon for U.S. Military Medical Personnel 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4706201
求助须知:如何正确求助?哪些是违规求助? 4072496
关于积分的说明 12592671
捐赠科研通 3773627
什么是DOI,文献DOI怎么找? 2084621
邀请新用户注册赠送积分活动 1111693
科研通“疑难数据库(出版商)”最低求助积分说明 989473