Unity and diversity of neural representation in executive functions.

功能专门化 代表(政治) 功能磁共振成像 心理学 认知心理学 意识的神经相关物 认知 神经科学 计算机科学 人工智能 模式识别(心理学) 政治学 政治 法学
作者
Li He,Kaixiang Zhuang,Qunlin Chen,Dongtao Wei,Xiaoyi Chen,Jin Fan,Jiang Qiu
出处
期刊:Journal of Experimental Psychology: General 卷期号:150 (11): 2193-2207 被引量:16
标识
DOI:10.1037/xge0001047
摘要

Although the unity and diversity model of executive functions (EFs) has been replicated, there are some studies questioning the validity of the EFs construct. This debate can be partially resolved by directly combining the brain activity pattern in different executive control processes. Previous univariate activation studies have suggested that the neural substrates of different EFs (e.g., updating, inhibiting, and shifting) involve common and distinct brain regions. However, the underlying multivariate neural representation of EFs in terms of unity and diversity is still elusive. Here, we employed the n-back task, stop signal task, and category switching task to investigate the characteristic of the neural representation in the three EF domains. At the global level, multivoxel pattern analysis revealed that a three-way classifier built with global activation pattern successfully distinguished the three EF tasks. At the local level, although most overlapping activations exhibit lower neural representational similarity, the inferior frontal junction showed similar neural representation across the three EFs, which was further confirmed by searchlight analysis that additionally revealed other similar representational regions were located in the presupplementary motor area extend to dorsal midcingulate cortex. In addition, using machine learning-based predictive framework, the resting-state functional networks built with the representational regions of EFs predicted intellectual abilities to some extent in a large independent sample. These findings suggest that different EFs are characterized by dissociable global neural representation but also share similar local neural representation, which contributes to understanding the neural correlates of the unity and diversity of EFs from an integrated framework. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
害怕的水之完成签到,获得积分10
1秒前
2秒前
伯赏剑发布了新的文献求助10
2秒前
英姑应助粗暴的火龙果采纳,获得10
3秒前
sherry发布了新的文献求助10
3秒前
科研通AI6应助潮汐采纳,获得10
3秒前
科研通AI5应助桃子采纳,获得10
4秒前
4秒前
博修发布了新的文献求助10
4秒前
小雨发布了新的文献求助10
5秒前
zzz发布了新的文献求助10
5秒前
qwer发布了新的文献求助10
5秒前
6秒前
zhl完成签到,获得积分10
6秒前
7秒前
槐序深巷发布了新的文献求助10
7秒前
yy完成签到,获得积分10
8秒前
小明应助博修采纳,获得10
9秒前
成就寄瑶完成签到,获得积分20
10秒前
赘婿应助zzz采纳,获得10
10秒前
无聊的万天完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
成就寄瑶发布了新的文献求助10
12秒前
15秒前
llzuo完成签到,获得积分10
17秒前
17秒前
冷傲迎梅完成签到 ,获得积分10
17秒前
KKDDBB发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助20
19秒前
从容的白凝完成签到,获得积分20
19秒前
科目三应助123lx采纳,获得10
19秒前
20秒前
隐形的非笑完成签到 ,获得积分10
20秒前
霜降发布了新的文献求助10
20秒前
善学以致用应助黎乐荷采纳,获得10
21秒前
sherry完成签到,获得积分20
22秒前
聪慧的安容完成签到,获得积分20
22秒前
赘婿应助一只拦路虎采纳,获得10
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
载人航天技术(下册)载人航天出版工程 作者:陈善广 ISBN:9787515914695 300
创造互补优势国外有人/无人协同解析 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4649652
求助须知:如何正确求助?哪些是违规求助? 4037707
关于积分的说明 12488697
捐赠科研通 3727616
什么是DOI,文献DOI怎么找? 2057427
邀请新用户注册赠送积分活动 1088328
科研通“疑难数据库(出版商)”最低求助积分说明 969471