Unity and diversity of neural representation in executive functions.

功能专门化 代表(政治) 功能磁共振成像 心理学 认知心理学 意识的神经相关物 认知 神经科学 计算机科学 人工智能 模式识别(心理学) 政治学 政治 法学
作者
Li He,Kaixiang Zhuang,Qunlin Chen,Dongtao Wei,Xiaoyi Chen,Jin Fan,Jiang Qiu
出处
期刊:Journal of Experimental Psychology: General 卷期号:150 (11): 2193-2207 被引量:16
标识
DOI:10.1037/xge0001047
摘要

Although the unity and diversity model of executive functions (EFs) has been replicated, there are some studies questioning the validity of the EFs construct. This debate can be partially resolved by directly combining the brain activity pattern in different executive control processes. Previous univariate activation studies have suggested that the neural substrates of different EFs (e.g., updating, inhibiting, and shifting) involve common and distinct brain regions. However, the underlying multivariate neural representation of EFs in terms of unity and diversity is still elusive. Here, we employed the n-back task, stop signal task, and category switching task to investigate the characteristic of the neural representation in the three EF domains. At the global level, multivoxel pattern analysis revealed that a three-way classifier built with global activation pattern successfully distinguished the three EF tasks. At the local level, although most overlapping activations exhibit lower neural representational similarity, the inferior frontal junction showed similar neural representation across the three EFs, which was further confirmed by searchlight analysis that additionally revealed other similar representational regions were located in the presupplementary motor area extend to dorsal midcingulate cortex. In addition, using machine learning-based predictive framework, the resting-state functional networks built with the representational regions of EFs predicted intellectual abilities to some extent in a large independent sample. These findings suggest that different EFs are characterized by dissociable global neural representation but also share similar local neural representation, which contributes to understanding the neural correlates of the unity and diversity of EFs from an integrated framework. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
袁晨悦完成签到 ,获得积分10
刚刚
丘比特应助dodoqia采纳,获得10
1秒前
硕shuo发布了新的文献求助20
1秒前
zho发布了新的文献求助10
2秒前
2秒前
4秒前
史淼荷发布了新的文献求助10
8秒前
8秒前
9秒前
溫蒂应助云泥采纳,获得10
9秒前
内向莛完成签到,获得积分10
9秒前
11秒前
我是老大应助赵鑫雅采纳,获得10
11秒前
14秒前
ShiRz发布了新的文献求助10
14秒前
麦冬发布了新的文献求助10
15秒前
16秒前
孤独的乐珍关注了科研通微信公众号
17秒前
18秒前
19秒前
十七完成签到 ,获得积分10
19秒前
19秒前
落叶完成签到 ,获得积分10
19秒前
20秒前
Orange应助硕shuo采纳,获得10
22秒前
22秒前
英俊的铭应助云泥采纳,获得10
24秒前
赵鑫雅发布了新的文献求助10
25秒前
dodoqia发布了新的文献求助10
26秒前
木木三发布了新的文献求助10
26秒前
NewMoona完成签到 ,获得积分10
27秒前
时丶倾完成签到,获得积分10
30秒前
30秒前
ding应助粗心的柠檬采纳,获得10
32秒前
科目三应助陈永伟采纳,获得10
33秒前
复杂的灵雁完成签到,获得积分10
34秒前
科研通AI2S应助淳于寻冬采纳,获得10
34秒前
伯约发布了新的文献求助10
35秒前
8R60d8应助hying采纳,获得10
35秒前
满意的青寒完成签到,获得积分10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776768
求助须知:如何正确求助?哪些是违规求助? 3322170
关于积分的说明 10209141
捐赠科研通 3037424
什么是DOI,文献DOI怎么找? 1666679
邀请新用户注册赠送积分活动 797625
科研通“疑难数据库(出版商)”最低求助积分说明 757944