亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial Intelligence–based Detection of FGFR3 Mutational Status Directly from Routine Histology in Bladder Cancer: A Possible Preselection for Molecular Testing?

医学 组织学 膀胱癌 尿路上皮癌 肿瘤科 病理 癌症 内科学 妇科
作者
Chiara Maria Lavinia Loeffler,Nadina Ortiz Bruechle,Max Jung,Lancelot Seillier,Michael Rose,Narmin Ghaffari Laleh,Ruth Knuechel,Titus J. Brinker,Christian Trautwein,Nadine T. Gaisa,Jakob Nikolas Kather
出处
期刊:European urology focus [Elsevier]
卷期号:8 (2): 472-479 被引量:80
标识
DOI:10.1016/j.euf.2021.04.007
摘要

BackgroundFibroblast growth factor receptor (FGFR) inhibitor treatment has become the first clinically approved targeted therapy in bladder cancer. However, it requires previous molecular testing of each patient, which is costly and not ubiquitously available.ObjectiveTo determine whether an artificial intelligence system is able to predict mutations of the FGFR3 gene directly from routine histology slides of bladder cancer.Design, setting, and participantsWe trained a deep learning network to detect FGFR3 mutations on digitized slides of muscle-invasive bladder cancers stained with hematoxylin and eosin from the Cancer Genome Atlas (TCGA) cohort (n = 327) and validated the algorithm on the "Aachen" cohort (n = 182; n = 121 pT2–4, n = 34 stroma-invasive pT1, and n = 27 noninvasive pTa tumors).Outcome measurements and statistical analysisThe primary endpoint was the area under the receiver operating curve (AUROC) for mutation detection. Performance of the deep learning system was compared with visual scoring by an uropathologist.Results and limitationsIn the TCGA cohort, FGFR3 mutations were detected with an AUROC of 0.701 (p < 0.0001). In the Aachen cohort, FGFR3 mutants were found with an AUROC of 0.725 (p < 0.0001). When trained on TCGA, the network generalized to the Aachen cohort, and detected FGFR3 mutants with an AUROC of 0.625 (p = 0.0112). A subgroup analysis and histological evaluation found highest accuracy in papillary growth, luminal gene expression subtypes, females, and American Joint Committee on Cancer (AJCC) stage II tumors. In a head-to-head comparison, the deep learning system outperformed the uropathologist in detecting FGFR3 mutants.ConclusionsOur computer-based artificial intelligence system was able to detect genetic alterations of the FGFR3 gene of bladder cancer patients directly from histological slides. In the future, this system could be used to preselect patients for further molecular testing. However, analyses of larger, multicenter, muscle-invasive bladder cancer cohorts are now needed in order to validate and extend our findings.Patient summaryIn this report, a computer-based artificial intelligence (AI) system was applied to histological slides to predict genetic alterations of the FGFR3 gene in bladder cancer. We found that the AI system was able to find the alteration with high accuracy. In the future, this system could be used to preselect patients for further molecular testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
BowieHuang应助科研通管家采纳,获得10
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
BowieHuang应助科研通管家采纳,获得10
35秒前
58秒前
王朝阳完成签到 ,获得积分10
1分钟前
月月月完成签到,获得积分10
1分钟前
2分钟前
2分钟前
英姑应助www采纳,获得10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
聪明宛秋完成签到 ,获得积分10
2分钟前
www发布了新的文献求助10
2分钟前
小鱼完成签到 ,获得积分10
2分钟前
2分钟前
烟花应助Marciu33采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
Marciu33发布了新的文献求助10
3分钟前
3分钟前
上官若男应助默默的板栗采纳,获得10
4分钟前
4分钟前
4分钟前
BowieHuang应助科研通管家采纳,获得10
4分钟前
CodeCraft应助科研通管家采纳,获得10
4分钟前
小唐完成签到,获得积分10
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
chenlc971125完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
loitinsuen完成签到,获得积分10
6分钟前
6分钟前
在水一方应助me采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534236
求助须知:如何正确求助?哪些是违规求助? 4622306
关于积分的说明 14582465
捐赠科研通 4562539
什么是DOI,文献DOI怎么找? 2500214
邀请新用户注册赠送积分活动 1479786
关于科研通互助平台的介绍 1450924