清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An Adaptive Mechanism for Dynamically Collaborative Computing Power and Task Scheduling in Edge Environment

计算机科学 分布式计算 调度(生产过程) 边缘计算 处理器调度 机制(生物学) GSM演进的增强数据速率 计算机网络 人工智能 数学优化 数学 认识论 哲学 资源(消歧)
作者
Yangchuan Xu,Lulu Chen,Zhihui Lu,Xin Du,Jie Wu,Patrick C. K. Hung
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (4): 3118-3129 被引量:17
标识
DOI:10.1109/jiot.2021.3119181
摘要

Edge computing can provide high bandwidth and low-latency service for big data tasks by leveraging the edge side's computing, storage, and network resources. With the development of microservice and docker technology, service providers can flexibly and dynamically cache microservice at the edge side to respond efficiently with limited resources. Automatically caching needed services on the nearest edge nodes and dynamically scheduling users' requests can realize that computing power and software services flow with the users to provide continuous services. However, achieving the goal needs to overcome many challenges, such as the significant fluctuation of user devices' requests at the edge side and the lack of collaboration among edge nodes. In this article, dynamic computing power scheduling and collaborative task scheduling among edge nodes are comprehensively developed. The problem is considered a multiobjective optimization problem, including sequentially minimizing the deadline missing rate of requests and the average task completion time. We propose an adaptive mechanism for dynamically collaborative computing power and task scheduling (ADCS) in the edge environment to solve this problem. It adopts the greedy decision method to schedule computing tasks to meet their deadline requirements. At the same time, it uses the best-fit method to adjust the computing resources according to the changes of users' requests. The simulation results show that ADCS can decrease the deadline missing rate and reduce the average completion time. Compared with DSR and CoDSR, the deadline missing rate is reduced by 59.91% and 19.95%, respectively. The average completion time is decreased by 37.87% and 6.71%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丝丢皮得完成签到 ,获得积分10
11秒前
14秒前
酷波er应助科研通管家采纳,获得10
16秒前
20秒前
27秒前
小程完成签到 ,获得积分10
41秒前
桐桐应助Chen采纳,获得10
50秒前
好好好完成签到 ,获得积分10
50秒前
LJ_2完成签到 ,获得积分10
58秒前
春日奶黄包完成签到 ,获得积分10
1分钟前
甜乎贝贝完成签到 ,获得积分10
1分钟前
科研临床两手抓完成签到 ,获得积分10
1分钟前
1分钟前
雍州小铁匠完成签到 ,获得积分10
1分钟前
Xieyusen发布了新的文献求助10
1分钟前
安详的曲奇完成签到,获得积分10
1分钟前
Xieyusen完成签到,获得积分10
2分钟前
2分钟前
kdc完成签到,获得积分10
2分钟前
张贵超发布了新的文献求助10
2分钟前
星辰大海应助张贵超采纳,获得10
2分钟前
噜噜晓完成签到 ,获得积分10
2分钟前
2分钟前
l老王完成签到 ,获得积分10
2分钟前
玄黄大世界完成签到,获得积分10
2分钟前
传奇完成签到 ,获得积分10
2分钟前
火鸟完成签到,获得积分10
2分钟前
2分钟前
2分钟前
NexusExplorer应助斯文的傲珊采纳,获得10
3分钟前
3分钟前
xue完成签到 ,获得积分10
3分钟前
大轩完成签到 ,获得积分10
3分钟前
Owen应助火鸟采纳,获得10
3分钟前
lilaccalla完成签到 ,获得积分10
3分钟前
玉yu完成签到 ,获得积分10
3分钟前
能干的山雁完成签到 ,获得积分10
3分钟前
3分钟前
DMA50完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784835
求助须知:如何正确求助?哪些是违规求助? 3330070
关于积分的说明 10244272
捐赠科研通 3045435
什么是DOI,文献DOI怎么找? 1671691
邀请新用户注册赠送积分活动 800613
科研通“疑难数据库(出版商)”最低求助积分说明 759541