CrossGR

手势 计算机科学 手势识别 人工智能 集合(抽象数据类型) 生成对抗网络 机器学习 语音识别 深度学习 人机交互 模式识别(心理学) 程序设计语言
作者
Xinyi Li,Liqiong Chang,Fangfang Song,Ju Wang,Xiaojiang Chen,Zhanyong Tang,Zheng Wang
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:5 (1): 1-23 被引量:21
标识
DOI:10.1145/3448100
摘要

This paper focuses on a fundamental question in Wi-Fi-based gesture recognition: "Can we use the knowledge learned from some users to perform gesture recognition for others?". This problem is also known as cross-target recognition. It arises in many practical deployments of Wi-Fi-based gesture recognition where it is prohibitively expensive to collect training data from every single user. We present CrossGR, a low-cost cross-target gesture recognition system. As a departure from existing approaches, CrossGR does not require prior knowledge (such as who is currently performing a gesture) of the target user. Instead, CrossGR employs a deep neural network to extract user-agnostic but gesture-related Wi-Fi signal characteristics to perform gesture recognition. To provide sufficient training data to build an effective deep learning model, CrossGR employs a generative adversarial network to automatically generate many synthetic training data from a small set of real-world examples collected from a small number of users. Such a strategy allows CrossGR to minimize the user involvement and the associated cost in collecting training examples for building an accurate gesture recognition system. We evaluate CrossGR by applying it to perform gesture recognition across 10 users and 15 gestures. Experimental results show that CrossGR achieves an accuracy of over 82.6% (up to 99.75%). We demonstrate that CrossGR delivers comparable recognition accuracy, but uses an order of magnitude less training samples collected from the end-users when compared to state-of-the-art recognition systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuan完成签到,获得积分10
1秒前
勤恳听筠完成签到,获得积分10
1秒前
zho发布了新的文献求助30
1秒前
2026毕业啦完成签到,获得积分10
2秒前
accept完成签到,获得积分10
2秒前
仁爱的兔子完成签到,获得积分10
2秒前
丘比特应助哈理老萝卜采纳,获得10
3秒前
王小茗完成签到,获得积分10
5秒前
xuan发布了新的文献求助30
5秒前
nimonimo完成签到,获得积分10
6秒前
林梓熙完成签到,获得积分20
7秒前
科研通AI2S应助初寒采纳,获得10
8秒前
Lucas应助xxy采纳,获得10
8秒前
9秒前
9秒前
9秒前
10秒前
HHH完成签到,获得积分10
10秒前
Alive发布了新的文献求助10
15秒前
热情平凡发布了新的文献求助10
15秒前
16秒前
句号完成签到 ,获得积分10
16秒前
17秒前
Zzz关注了科研通微信公众号
17秒前
19秒前
陈文文完成签到 ,获得积分10
20秒前
20秒前
Xdz完成签到 ,获得积分10
22秒前
KPJYW完成签到,获得积分10
22秒前
22秒前
23秒前
25秒前
喜悦的唇膏完成签到,获得积分10
27秒前
务实鞅发布了新的文献求助10
28秒前
斌城发布了新的文献求助10
29秒前
mark33442发布了新的文献求助10
30秒前
31秒前
32秒前
共享精神应助水星逃逸采纳,获得10
32秒前
rh完成签到,获得积分10
33秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801574
求助须知:如何正确求助?哪些是违规求助? 3347346
关于积分的说明 10333136
捐赠科研通 3063591
什么是DOI,文献DOI怎么找? 1681885
邀请新用户注册赠送积分活动 807767
科研通“疑难数据库(出版商)”最低求助积分说明 763867