已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A novel attention-guided convolutional network for the detection of abnormal cervical cells in cervical cancer screening

宫颈癌 棱锥(几何) 计算机科学 人工智能 特征(语言学) 卷积神经网络 灵敏度(控制系统) 阴道镜检查 宫颈癌筛查 保险丝(电气) 细胞学 医学 模式识别(心理学) 癌症 病理 数学 内科学 工程类 哲学 电气工程 语言学 电子工程 几何学
作者
Lei Cao,Jinying Yang,Zhiwei Rong,Lulu Li,Bairong Xia,Chong You,Ge Lou,Lei Jiang,Chun Du,Hongxue Meng,Wenjie Wang,Meng Wang,Kang Li,Yan Hou
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:73: 102197-102197 被引量:74
标识
DOI:10.1016/j.media.2021.102197
摘要

Early detection of abnormal cervical cells in cervical cancer screening increases the chances of timely treatment. But manual detection requires experienced pathologists and is time-consuming and error prone. Previously, some methods have been proposed for automated abnormal cervical cell detection, whose performance yet remained debatable. Here, we develop an attention feature pyramid network (AttFPN) for automatic abnormal cervical cell detection in cervical cytology images to assist pathologists to make a more accurate diagnosis. Our proposed method consists of two main components. First, an attention module mimicking the way pathologists reading a cervical cytology image. It learns what features to emphasize or suppress by refining extracted features effectively. Second, a multi-scale region-based feature fusion network guided by clinical knowledge to fuse the refined features for detecting abnormal cervical cells at different scales. The region proposals in the multi-scale network are designed according to the clinical knowledge about size and shape distribution of real abnormal cervical cells. Our method, trained and validated with 7030 annotated cervical cytology images, performs better than the state of art deep learning-based methods. The overall sensitivity, specificity, accuracy, and AUC of an independent testing dataset with 3970 cervical cytology images is 95.83%, 94.81%, 95.08% and 0.991, respectively, which is comparable to that of an experienced pathologist with 10 years of experience. Besides, we further validated our method on an external dataset with 110 cases and 35,013 images from a different organization, the case-level sensitivity, specificity, accuracy, and AUC is 91.30%, 90.62%, 90.91% and 0.934, respectively. Average diagnostic time of our method is 0.04s per image, which is much quicker than the average time of pathologists (14.83s per image). Thus, our AttFPN is effective and efficient in cervical cancer screening, and improvement of clinical workflows for the benefit of potential patients. Our code is available at https://github.com/cl2227619761/TCT_Detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
小林发布了新的文献求助10
4秒前
docM完成签到 ,获得积分10
6秒前
SOESAN完成签到,获得积分10
6秒前
tmq发布了新的文献求助10
7秒前
小林完成签到,获得积分10
11秒前
清爽的乐曲完成签到,获得积分10
13秒前
13秒前
16秒前
爆米花应助tmq采纳,获得10
16秒前
炙热曼梅完成签到 ,获得积分10
18秒前
拉尼娜发布了新的文献求助10
19秒前
wmmm发布了新的文献求助10
23秒前
phuocnlh完成签到,获得积分10
27秒前
呜呜完成签到 ,获得积分10
28秒前
Akim应助拉尼娜采纳,获得10
29秒前
30秒前
丘比特应助踏实含之采纳,获得10
33秒前
灯飞发布了新的文献求助10
35秒前
科目三应助瓶盖采纳,获得10
36秒前
41秒前
41秒前
怕黑的灵萱完成签到 ,获得积分10
42秒前
无情听南完成签到,获得积分10
42秒前
44秒前
tanrui发布了新的文献求助10
44秒前
我是老大应助XL神放采纳,获得10
44秒前
45秒前
羞涩的惜梦关注了科研通微信公众号
47秒前
小玉发布了新的文献求助10
48秒前
49秒前
FashionBoy应助灯飞采纳,获得10
49秒前
完美世界应助slx采纳,获得30
49秒前
zho发布了新的文献求助10
51秒前
51秒前
Rondab应助Mac采纳,获得10
52秒前
丘比特应助Summeryz920采纳,获得10
53秒前
隐形曼青应助tanrui采纳,获得10
54秒前
wei发布了新的文献求助10
56秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994236
求助须知:如何正确求助?哪些是违规求助? 3534710
关于积分的说明 11266276
捐赠科研通 3274624
什么是DOI,文献DOI怎么找? 1806413
邀请新用户注册赠送积分活动 883273
科研通“疑难数据库(出版商)”最低求助积分说明 809731