已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Surface defect detection of cylindrical lithium-ion battery by multiscale image augmentation and classification

计算机科学 人工智能 卷积神经网络 深度学习 电池(电) 模式识别(心理学) 鉴定(生物学) 阶段(地层学) 方案(数学) 图像(数学) 功率(物理) 数学 生物 量子力学 物理 数学分析 古生物学 植物
作者
Harshad Kumar Dandage,Keh-Moh Lin,Horng-Horng Lin,Yeou‐Jiunn Chen,Kun-San Tseng
出处
期刊:International Journal of Modern Physics B [World Scientific]
卷期号:35 (14n16): 2140011-2140011 被引量:11
标识
DOI:10.1142/s0217979221400117
摘要

While deep convolutional neural networks (CNNs) have recently made large advances in AI, the need of large datasets for deep CNN learning is still a barrier to many industrial applications where only limited data samples can be offered for system developments due to confidential issues. We thus propose an approach of multi-scale image augmentation and classification for training deep CNNs from a small dataset for surface defect detection on cylindrical lithium-ion batteries. In the proposed Lithium-ion battery Surface Defect Detection (LSDD) system, an augmented dataset of multi-scale patch samples generated from a small number of lithium-ion battery images is used in the learning process of a two-stage classification scheme that aims to differentiate defect image patches of lithium-ion batteries in the first stage and to identify specific defect types in the second stage. The LSDD approach is an efficient prototyping method of defect detection from limited training images for quick system evaluation and deployment. The experiments show that, based on only 26 source images, the proposed LSDD (i) constructs two augmented multi-scale datasets of 19,309 and 6889 image patches for training and test, respectively, (ii) achieves 93.67% accuracy for discriminating defect image patches in the first stage, and (iii) reaches 90.78% mean precision rate and 93.89% mean recall rate for defect type identification in the second stage. Our two-stage classification scheme has higher defect detection sensitivity than an intuitive one-stage classification scheme by 0.69%, and outperforms the one-stage scheme in identifying specific defect types. For comparing with YOLOv3 detector, less defect misdetections are observed in our approach as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
王健芬完成签到 ,获得积分10
2秒前
抹茶完成签到 ,获得积分10
2秒前
Orange应助毛竹采纳,获得10
3秒前
YI_JIA_YI完成签到,获得积分10
4秒前
5秒前
kano发布了新的文献求助10
5秒前
英姑应助小橘子吃傻子采纳,获得10
6秒前
7秒前
8秒前
8秒前
8秒前
菓小柒完成签到 ,获得积分10
8秒前
共享精神应助霜降采纳,获得10
9秒前
Siren发布了新的文献求助10
10秒前
Orange应助纯真忆安采纳,获得10
11秒前
12秒前
zbc发布了新的文献求助10
12秒前
石头完成签到 ,获得积分10
12秒前
天棱发布了新的文献求助10
15秒前
15秒前
17秒前
ding应助HanFeiZi采纳,获得10
18秒前
19秒前
华仔应助zbc采纳,获得10
19秒前
开朗活泼的大山完成签到 ,获得积分10
20秒前
20秒前
mo完成签到,获得积分10
21秒前
Yrs会更好完成签到 ,获得积分10
21秒前
jing发布了新的文献求助10
22秒前
orixero应助lvzhechen采纳,获得10
22秒前
标致谷菱完成签到,获得积分10
23秒前
纯真忆安发布了新的文献求助10
24秒前
lotus发布了新的文献求助10
25秒前
26秒前
27秒前
29秒前
30秒前
32秒前
沉静的万天完成签到 ,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469657
求助须知:如何正确求助?哪些是违规求助? 4572650
关于积分的说明 14336604
捐赠科研通 4499505
什么是DOI,文献DOI怎么找? 2465100
邀请新用户注册赠送积分活动 1453653
关于科研通互助平台的介绍 1428141