亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Transfer Relation Network for Fault Diagnosis of Rotating Machinery With Small Data

特征(语言学) 学习迁移 关系(数据库) 计算机科学 模式识别(心理学) 特征提取 联营 断层(地质) 相似性(几何) 领域(数学分析) 特征学习 深度学习 机器学习 数据挖掘 人工智能 数学 地质学 数学分析 哲学 图像(数学) 地震学 语言学
作者
Na Lü,Huiyang Hu,Tao Yin,Yaguo Lei,Shuhui Wang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (11): 11927-11941 被引量:80
标识
DOI:10.1109/tcyb.2021.3085476
摘要

Many deep-learning methods have been developed for fault diagnosis. However, due to the difficulty of collecting and labeling machine fault data, the datasets in some practical applications are relatively much smaller than the other big data benchmarks. In addition, the fault data come from different machines. Therefore, on some occasions, fault diagnosis is a multidomain problem with small data, where satisfactory transfer performance is difficult to obtain and has been rarely explored from the few-shot learning viewpoint. Different from the existing deep transfer learning solutions, a novel transfer relation network (TRN), combining a few-shot learning mechanism and transfer learning, is developed in this study. Specifically, the fault diagnosis problem has been treated as a similarity metric-learning problem instead of solely feature weighted classification. A feature net and a relation net have been, respectively, constructed for feature extraction and relation computation. The Siamese structure has been borrowed to extract the features of the source and the target domain samples with shared weights. Multikernel maximum mean discrepancy (MK-MMD) is employed on several higher layers with different tradeoff parameters to enable an efficient domain feature transfer considering different feature properties. To implement efficient diagnosis based on small data, an episode-based few-shot training strategy is adopted to train TRN. Average pooling has been adopted to suppress the noise influence from the vibration sequence which turns out to be important for the success of time sequence-based fault diagnosis. Transfer experiments on four datasets have verified the superior performance of TRN. A significant improvement of classification accuracy has been made compared with the state-of-the-art methods on the adopted datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fine完成签到,获得积分10
13秒前
15秒前
余念安完成签到 ,获得积分10
15秒前
Fine发布了新的文献求助10
19秒前
聪明勇敢有力气完成签到 ,获得积分10
26秒前
28秒前
35秒前
41秒前
斯文败类应助科研通管家采纳,获得10
45秒前
KYT完成签到 ,获得积分10
51秒前
可夫司机完成签到 ,获得积分10
57秒前
59秒前
DrHuang完成签到,获得积分10
1分钟前
西门晴发布了新的文献求助10
1分钟前
1分钟前
西门晴完成签到,获得积分10
1分钟前
1分钟前
1分钟前
半糖可乐完成签到,获得积分10
1分钟前
碧蓝可仁完成签到 ,获得积分10
1分钟前
1分钟前
Yuelong完成签到,获得积分10
2分钟前
2分钟前
2分钟前
Yuelong发布了新的文献求助50
2分钟前
2分钟前
yvette完成签到,获得积分10
2分钟前
科研通AI5应助咸金城采纳,获得20
2分钟前
2分钟前
3分钟前
3分钟前
咸金城发布了新的文献求助20
3分钟前
所所应助yvette采纳,获得10
3分钟前
上官若男应助美好采纳,获得10
3分钟前
今天发CNS了嘛完成签到,获得积分10
3分钟前
无花果应助侯辰沾采纳,获得10
3分钟前
3分钟前
henxi完成签到,获得积分10
4分钟前
半只熊完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Cleaning Technology in Semiconductor Device Manufacturing: Proceedings of the Sixth International Symposium (Advances in Soil Science) 200
Study of enhancing employee engagement at workplace by adopting internet of things 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837355
求助须知:如何正确求助?哪些是违规求助? 3379531
关于积分的说明 10509773
捐赠科研通 3099163
什么是DOI,文献DOI怎么找? 1706958
邀请新用户注册赠送积分活动 821348
科研通“疑难数据库(出版商)”最低求助积分说明 772552