Oriented Ship Detection Based on Strong Scattering Points Network in Large-Scale SAR Images

合成孔径雷达 计算机科学 比例(比率) 雷达成像 人工智能 散射 遥感 雷达 地质学 电信 量子力学 物理 光学
作者
Yuanrui Sun,Xian Sun,Zhirui Wang,Kun Fu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-18 被引量:31
标识
DOI:10.1109/tgrs.2021.3130117
摘要

Ship detection has broad applications in many areas, including fishery management, maritime rescue, and maritime monitoring. Recently, numerous detectors based on deep learning have been carried in ship detection in synthetic aperture radar (SAR) images. However, detecting the inshore ships faces enormous challenges because of the strong scattering interference of the inland area. In order to address such issues, a novel method named strong scattering points network for ship detection is proposed in this article. First, according to the SAR imaging mechanism, the ships usually appear strong scattering phenomenon in the SAR images. Therefore, the proposed method detects the strong scattering points on the ship and then aggregates their positions to obtain the ship's arbitrary orientation box. Second, our method designs an embedding vector to cluster these points as an individual object to regress the oriented bounding box. Third, in order to distinguish the strong scattering points on land, a ship attention module is employed to extract the image texture features and representations of local features. It can suppress the false alarm caused by land interference in the detection process. Furthermore, to demonstrate the effectiveness of the proposed algorithm, this article introduces a new ship dataset for oriented ship detection named large-scale dataset for ship detection in SAR images (LDSD). Moreover, the public SAR ship detection dataset (SSDD) is utilized to verify the robustness and generalization ability of the detector. The experimental results on two datasets show that our method has a strong anti-interference ability in the inshore background and achieves state-of-the-art detection performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助奔跑的胰岛素采纳,获得10
刚刚
ZY发布了新的文献求助10
1秒前
王俊1314完成签到 ,获得积分10
1秒前
小白完成签到 ,获得积分10
1秒前
elang发布了新的文献求助10
2秒前
呆鸥完成签到,获得积分10
2秒前
耶耶耶完成签到,获得积分20
2秒前
浮游应助wyt采纳,获得10
3秒前
源源不圆发布了新的文献求助10
3秒前
微笑的忆枫给xiaoxiaoluo的求助进行了留言
4秒前
ydq完成签到,获得积分10
4秒前
CC完成签到,获得积分10
5秒前
橘子汽水完成签到 ,获得积分10
5秒前
τ涛完成签到,获得积分10
5秒前
6秒前
平常以丹完成签到,获得积分10
6秒前
高高诗柳完成签到 ,获得积分10
6秒前
李明月完成签到,获得积分10
6秒前
慕青应助青雉采纳,获得10
6秒前
FashionBoy应助笑笑采纳,获得10
7秒前
舒适店员完成签到 ,获得积分10
7秒前
yy完成签到,获得积分10
8秒前
Claudia完成签到 ,获得积分10
9秒前
叶叶叶发布了新的文献求助10
9秒前
9秒前
9秒前
科研通AI2S应助WY采纳,获得10
11秒前
秋光完成签到,获得积分20
11秒前
12秒前
奔跑的胰岛素完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
稳重听双完成签到,获得积分10
14秒前
14秒前
15秒前
别赋完成签到,获得积分10
15秒前
比奇堡第一水母猎手海绵宝宝完成签到,获得积分10
15秒前
djvesox完成签到,获得积分20
15秒前
包容的千兰完成签到,获得积分20
16秒前
朝花夕拾完成签到,获得积分10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
苯丙氨酸解氨酶的祖先序列重建及其催化性能 700
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4847501
求助须知:如何正确求助?哪些是违规求助? 4147288
关于积分的说明 12844983
捐赠科研通 3894206
什么是DOI,文献DOI怎么找? 2140652
邀请新用户注册赠送积分活动 1160255
关于科研通互助平台的介绍 1060597