清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A coarse-to-fine boundary refinement network for building footprint extraction from remote sensing imagery

计算机科学 足迹 人工智能 边界(拓扑) 分割 卷积神经网络 比例(比率) 计算机视觉 对象(语法) 像素 模式识别(心理学) 遥感 数据挖掘 地理 地图学 数学 数学分析 考古
作者
Haonan Guo,Bo Du,Liangpei Zhang,Xin Su
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:183: 240-252 被引量:107
标识
DOI:10.1016/j.isprsjprs.2021.11.005
摘要

Extracting building footprints from remotely sensed imagery has long been a challenging task and is not yet fully solved. Obstructions from nearby shadows or trees, varying shapes of rooftops, omission of small buildings, and varying scale of buildings hinder existing automated models for extracting sharp building boundaries. Different reasons account for these challenges. In convolutional neural network-based methods, the down-sampling operation loses spatial details of the input images; and small buildings are omitted from the high-level features. The sheltering trees and adjacent objects shadowing may cause errors since semantic information cannot be effectively preserved. Moreover, the insufficient use of multi-scale building features causes blurry edges in the predictions for buildings with complex shapes. To address these challenges, we propose a novel coarse-to-fine boundary refinement network (CBR-Net) that accurately extracts building footprints from remote sensing imagery. Unlike the existing semantic segmentation methods that directly generate building predictions at the highest level, we designed a module that progressively refines the building prediction in a coarse-to-fine manner. In this way, the advantages of both the high-level and low-level features can be retained. We also present a novel boundary refinement (BR) module that enhances the ability of the CBR-Net model to perceive and refine building edges. The BR module refines building prediction by perceiving the direction of each pixel in a remotely sensed optical image to the center of the nearest object to which it might belong. The refined results are used as pseudo labels in a self-supervision process that increases model robustness to noisy labels or obstructions. Experimental results on three public building datasets, including the WHU building dataset, the Massachusetts building dataset, and the Inria aerial image dataset, demonstrate the effectiveness of the proposed method. In evaluation tests, CBR-Net outperformed other state-of-the-art algorithms on the three datasets by maintaining both the continuous entities and accurate boundaries of buildings. The source code of the proposed CBR-Net is available at https://github.com/HaonanGuo/CBRNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助科研通管家采纳,获得10
6秒前
萝卜猪完成签到,获得积分10
37秒前
生如夏花完成签到 ,获得积分10
1分钟前
1分钟前
传奇3应助科研通管家采纳,获得10
2分钟前
茉莉雨完成签到 ,获得积分10
2分钟前
2分钟前
鹿茸与共发布了新的文献求助10
2分钟前
Jayzie完成签到 ,获得积分10
3分钟前
xinjiasuki完成签到 ,获得积分10
3分钟前
CipherSage应助范范采纳,获得10
3分钟前
3分钟前
范范发布了新的文献求助10
3分钟前
CodeCraft应助科研通管家采纳,获得10
4分钟前
希望天下0贩的0应助范范采纳,获得10
4分钟前
Sunny完成签到,获得积分10
4分钟前
sailingluwl完成签到,获得积分10
4分钟前
wujiwuhui完成签到 ,获得积分10
4分钟前
紫熊完成签到,获得积分10
4分钟前
yzhilson完成签到 ,获得积分10
4分钟前
寻桃阿玉完成签到 ,获得积分10
5分钟前
Much完成签到 ,获得积分10
7分钟前
恶恶么v完成签到,获得积分10
7分钟前
7分钟前
666发布了新的文献求助10
7分钟前
7分钟前
英姑应助调皮醉波采纳,获得10
7分钟前
ma发布了新的文献求助10
7分钟前
科研通AI5应助大头采纳,获得10
8分钟前
9分钟前
9分钟前
范范发布了新的文献求助10
9分钟前
大头发布了新的文献求助10
9分钟前
9分钟前
调皮醉波发布了新的文献求助10
9分钟前
sowhat完成签到 ,获得积分10
9分钟前
田様应助666采纳,获得10
10分钟前
调皮醉波完成签到,获得积分10
10分钟前
inRe完成签到,获得积分10
11分钟前
xwl9955完成签到 ,获得积分10
11分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827299
求助须知:如何正确求助?哪些是违规求助? 3369624
关于积分的说明 10456593
捐赠科研通 3089268
什么是DOI,文献DOI怎么找? 1699822
邀请新用户注册赠送积分活动 817501
科研通“疑难数据库(出版商)”最低求助积分说明 770251