Keeping Cell Selection Model Up-to-Date to Adapt to Time-Dependent Environment in Sparse Mobile Crowdsensing

计算机科学 选择(遗传算法) 机器学习 推论 拥挤感测 数据建模 数据挖掘 人工智能 选型 数据科学 数据库
作者
Lei Han,Zhiyong Yu,Liang Wang,Zhiwen Yu,Bin Guo
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:8 (18): 13914-13925 被引量:31
标识
DOI:10.1109/jiot.2021.3068415
摘要

Sparse mobile crowdsensing (MCS) requires participants to collect data from partial cells and then intelligently infer the data of the rest cells. Since collecting data from different cells will probably result in different data inference quality, cell selection (i.e., which cells need to be selected to collect data) is a critical issue in Sparse MCS. Currently, state-of-the-art cell selection algorithms are implemented based on reinforcement learning. These algorithms ignore the problem that the urban environment is usually time dependent, and the cell selection model needs to be kept up-to-date to adapt to the time-dependent environment. However, Sparse MCS applications require participants to collect data only in a few cells, which makes it hard to obtain suitable training data for continuous cell selection model learning. To solve this problem, we model the spatiotemporal correlations in the collected sparse data, and then design various methods to update training data based on it. Particularly, these methods make full use of the gradual changes of data in time and space, and reasonably transform and splice sparse data at different moments. Finally, updated training data is fed to the cell selection model to keep it up-to-date. We conduct experimental evaluations by performing several sensing tasks in air quality monitoring. The results show that our proposed methods can effectively update training data as well as the cell selection model. Compared with several baselines, our best method can reduce inference error by more than 10% on average.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
骑驴找马发布了新的文献求助10
刚刚
海棠石三完成签到,获得积分10
1秒前
1秒前
xiaoQ完成签到 ,获得积分10
3秒前
JIANGSHUI发布了新的文献求助10
4秒前
Orange应助77采纳,获得10
7秒前
7秒前
浮游应助蒜香炒田鸡采纳,获得10
7秒前
8秒前
包元霜发布了新的文献求助10
9秒前
Marciu33发布了新的文献求助10
10秒前
魏艳秋完成签到,获得积分10
10秒前
10秒前
悦耳的玫瑰完成签到,获得积分10
11秒前
11秒前
乔达摩完成签到 ,获得积分0
11秒前
12秒前
领导范儿应助Fran07采纳,获得10
13秒前
专一的妙海完成签到,获得积分10
14秒前
科研通AI6应助wciphone采纳,获得10
14秒前
万能图书馆应助Persistence采纳,获得10
14秒前
14秒前
卟啉光环完成签到,获得积分10
15秒前
15秒前
hanhan发布了新的文献求助10
16秒前
嘻嘻哈哈关注了科研通微信公众号
16秒前
高瑞航完成签到,获得积分10
16秒前
16秒前
科研发布了新的文献求助10
17秒前
CodeCraft应助ZYS采纳,获得10
17秒前
gesus发布了新的文献求助10
17秒前
小猪啵比发布了新的文献求助10
18秒前
吕大本事发布了新的文献求助10
18秒前
虞不斜完成签到 ,获得积分10
19秒前
20秒前
老王爱学习完成签到,获得积分10
21秒前
科研通AI6应助海绵宝宝采纳,获得10
22秒前
22秒前
胜天半子完成签到,获得积分10
22秒前
科研通AI6应助卟啉光环采纳,获得10
22秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5333574
求助须知:如何正确求助?哪些是违规求助? 4472005
关于积分的说明 13918655
捐赠科研通 4365643
什么是DOI,文献DOI怎么找? 2398554
邀请新用户注册赠送积分活动 1391745
关于科研通互助平台的介绍 1362482