The use of high-throughput phenotyping in genomic selection context

生物 选择(遗传算法) 基因组选择 数据科学 生物技术 计算生物学 背景(考古学) 吞吐量 计算机科学 机器学习 基因型 遗传学 基因 古生物学 电信 单核苷酸多态性 无线
作者
Reyna Persa,Pedro César de Oliveira Ribeiro,Diego Jarquín
出处
期刊:Crop Breeding and Applied Biotechnology [Brazilian Society of Plant Breeding]
卷期号:21 (spe) 被引量:5
标识
DOI:10.1590/1984-70332021v21sa19
摘要

One of the biggest challenges that breeders face is the development of improved cultivars in changing climate conditions posing extra challenges to their labor. On the other hand, the availability of data generated with automated systems offers an opportunity to characterize genetically and phenotypically genotypes with high detail. Modern sequencing technologies delivering hundreds of thousands of molecular makers, offered the opportunity of selecting genotypes without the need of observing these in fields and this methodology was coined as Genomic Selection (GS). More recently, sophisticated automated phenotyping platforms depending on sensors able to measure a large number of plant features were also developed and have shown potential in plant breeding applications. These modern phenotyping systems that attempt to efficiently deliver phenotypic information on secondary traits are also know as high-throughput phenotyping platforms (HTPPs). The integration of HTPP with GS models opened a new research front to improve the efficiency of the selection methods based on genomic data only, specially of those traits depending on a large number of genes with small effects (complex traits). However, there are still remaining some issues to solve for developing a robust methodology able to combine in an efficient and informed way these two high dimensional data types. In this document, we provide an overview of the statistical analysis of the data derived of the HTTPs for improving the predictive ability of conventional GS models. We provide a brief introduction showing the utility of genomic data in plant breeding applications. After, we provide an overview of the field-based HTPPs considering the light detection and ranging and the unmanned aerial vehicles and how the image data derived from these platforms can be used to accelerate genetic gains. After that, we discuss about the extension of the conventional GS models to allow the incorporation of data derived of the HTPPs as main effects and also in interaction with environmental factors. The availability of several sources of information have opened a venue to investigate besides the univariate or single trait model, models based on multiple traits and also models that consider multiple time measures allowing longitudinal GS studies. Finally, we provide some conclusions as well as we mention some the current issues that do not allow to fully exploit the potential of HTTPs in plant breeding applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yulk发布了新的文献求助10
1秒前
充电宝应助小陆采纳,获得10
1秒前
Able完成签到,获得积分10
1秒前
大模型应助如风随水采纳,获得10
2秒前
ceci_s完成签到 ,获得积分10
2秒前
今后应助显隐采纳,获得10
2秒前
5秒前
无花果应助Able采纳,获得10
5秒前
TRz完成签到,获得积分10
6秒前
6秒前
Micheallee发布了新的文献求助10
8秒前
9秒前
11完成签到,获得积分10
10秒前
SS小天使发布了新的文献求助10
10秒前
Goblin发布了新的文献求助10
11秒前
11秒前
哈哈哈发布了新的文献求助30
12秒前
追风关注了科研通微信公众号
12秒前
科研通AI5应助朱凯洋采纳,获得10
12秒前
如风随水发布了新的文献求助10
12秒前
13秒前
13秒前
完美世界应助dzx采纳,获得10
13秒前
13秒前
zhuxd发布了新的文献求助10
14秒前
yhgz完成签到,获得积分10
14秒前
希夷完成签到,获得积分10
14秒前
15秒前
15秒前
安详世平发布了新的文献求助10
15秒前
闪闪怀柔完成签到,获得积分10
15秒前
醒醒发布了新的文献求助10
16秒前
Honor发布了新的文献求助10
16秒前
WD完成签到,获得积分10
18秒前
18秒前
王唯任发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
小二郎应助南川采纳,获得10
19秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802268
求助须知:如何正确求助?哪些是违规求助? 3348011
关于积分的说明 10335931
捐赠科研通 3063932
什么是DOI,文献DOI怎么找? 1682313
邀请新用户注册赠送积分活动 808016
科研通“疑难数据库(出版商)”最低求助积分说明 763997